ITERATIVE ADAPTATION ALGORITHMS IN MULTICRITERIA TASKS

{"title":"ITERATIVE ADAPTATION ALGORITHMS IN MULTICRITERIA TASKS","authors":"","doi":"10.18469/ikt.2023.21.2.08","DOIUrl":null,"url":null,"abstract":"This article examines using of iterative adaptation algorithms to solve the problem of determining measurement location of the carotid artery intima-media complex. The formulation of a multi-criteria decision-making problem, as the basis for determining correct criterion for proper selection and successful recognizing of the required object in an ultrasound image. The work discusses principles of constructing cascade classifiers as well as, the use of the cascade Haar classifier and the cascade LBP classifier, for which Haar primitives and local binary templates are used as a basis. The results of experimental studies in order to determine effectivity of different boosting algorithms to solve this problem are presented. The best results were shown by the Haar cascade classifier, developed using an iterative adaptation algorithm, which manages solving a multicriteria problem on a given training set more successfully and determines the most suitable areas for measuring the thickness of the common carotid artery intimate media complex.","PeriodicalId":508406,"journal":{"name":"Infokommunikacionnye tehnologii","volume":"59 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infokommunikacionnye tehnologii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18469/ikt.2023.21.2.08","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article examines using of iterative adaptation algorithms to solve the problem of determining measurement location of the carotid artery intima-media complex. The formulation of a multi-criteria decision-making problem, as the basis for determining correct criterion for proper selection and successful recognizing of the required object in an ultrasound image. The work discusses principles of constructing cascade classifiers as well as, the use of the cascade Haar classifier and the cascade LBP classifier, for which Haar primitives and local binary templates are used as a basis. The results of experimental studies in order to determine effectivity of different boosting algorithms to solve this problem are presented. The best results were shown by the Haar cascade classifier, developed using an iterative adaptation algorithm, which manages solving a multicriteria problem on a given training set more successfully and determines the most suitable areas for measuring the thickness of the common carotid artery intimate media complex.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多标准任务中的迭代适应算法
本文研究使用迭代适应算法来解决确定颈动脉内膜-中膜复合体测量位置的问题。提出了一个多标准决策问题,作为确定正确标准的基础,以便在超声图像中正确选择并成功识别所需对象。作品讨论了级联分类器的构建原则,以及级联哈尔分类器和级联 LBP 分类器的使用,其中哈尔基元和局部二进制模板被用作级联分类器的基础。为了确定不同提升算法解决这一问题的有效性,本文介绍了实验研究的结果。使用迭代适应算法开发的 Haar 级联分类器显示了最佳结果,它能更成功地解决给定训练集上的多标准问题,并确定最适合测量颈总动脉亲密介质复合体厚度的区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CONCEPT OF APPLICATION OF CONTROL ALGORITHMS FOR MANIPULATION ROBOTS TO PERFORM COMPLEX TECHNOLOGICAL OPERATIONS IN INDUSTRY OPTIMIZATION OF MODE PROPAGATION FOR AN EMBEDIER OF OPTICALVORTEX BEAMS BASED ON A MICRO-RING RESONATOR RECOMMENDATIONS ON THE URBAN NETWORK FOTL STRUCTURE WITH THE LOWEST POSSIBLE LEVEL OF DISTORTION OF INFORMATION AND CONTROL ILCF-SIGNALS STRUCTURE FEATURES OF MINIMUM FREQUENCY SHIFT KEYING SIGNAL MODEMS TRAFFIC ANOMALY DETECTION IN VEHICLE BUS BY RECURRENT LSTM NEURAL NETWORK
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1