Travis Allen, Jake Graser, Ramsey Issa, Taylor D. Sparks
{"title":"Thermoelectric properties of TaVO5 and GdTaO4: An experimental verification of machine learning prediction","authors":"Travis Allen, Jake Graser, Ramsey Issa, Taylor D. Sparks","doi":"10.1177/17436753231213060","DOIUrl":null,"url":null,"abstract":"Advancements in materials discovery tend to rely disproportionately on happenstance and luck rather than employing a systematic approach. Recently, advances in computational power have allowed researchers to build computer models to predict the material properties of any chemical formula. From energy minimization techniques to machine learning-based models, these algorithms have unique strengths and weaknesses. However, a computational model is only as good as its accuracy when compared to real-world measurements. In this work, we take two recommendations from a thermoelectric machine learning model, TaVO[Formula: see text] and GdTaO[Formula: see text], and measure their thermoelectric properties of Seebeck coefficient, thermal conductivity, and electrical conductivity. We see that the predictions are mixed; thermal conductivities are correctly predicted, while electrical conductivities and Seebeck coefficients are not. Furthermore, we explore TaVO[Formula: see text]’s unusually low thermal conductivity of 1.2 Wm[Formula: see text]K[Formula: see text], and we discover a possible new avenue of research of a low thermal conductivity oxide family.","PeriodicalId":516873,"journal":{"name":"Advances in Applied Ceramics: Structural, Functional and Bioceramics","volume":"14 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Ceramics: Structural, Functional and Bioceramics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/17436753231213060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Advancements in materials discovery tend to rely disproportionately on happenstance and luck rather than employing a systematic approach. Recently, advances in computational power have allowed researchers to build computer models to predict the material properties of any chemical formula. From energy minimization techniques to machine learning-based models, these algorithms have unique strengths and weaknesses. However, a computational model is only as good as its accuracy when compared to real-world measurements. In this work, we take two recommendations from a thermoelectric machine learning model, TaVO[Formula: see text] and GdTaO[Formula: see text], and measure their thermoelectric properties of Seebeck coefficient, thermal conductivity, and electrical conductivity. We see that the predictions are mixed; thermal conductivities are correctly predicted, while electrical conductivities and Seebeck coefficients are not. Furthermore, we explore TaVO[Formula: see text]’s unusually low thermal conductivity of 1.2 Wm[Formula: see text]K[Formula: see text], and we discover a possible new avenue of research of a low thermal conductivity oxide family.