ESTIMATIONS OF GREEN HOUSE GASES EMISSIONS OF TURKEY BY STATISTICAL METHODS

Suat Öztürk, Ahmet Emir
{"title":"ESTIMATIONS OF GREEN HOUSE GASES EMISSIONS OF TURKEY BY STATISTICAL METHODS","authors":"Suat Öztürk, Ahmet Emir","doi":"10.36306/konjes.1267008","DOIUrl":null,"url":null,"abstract":"The way of life, consumption habits, urbanization rate, type of energy production and increasing energy need with growing economies and population progressively promote the GHGs emissions to Earth’s atmosphere. GHGs consisting of CH4, N2O, CO2, H2O and HFCs cause the climate change, disrupting ecological balance, melting glaciers with global warming in the last decades. Therefore, the issues of future prediction and reduction of GHGs emissions became crucial for policy makers of Turkey and other countries under the international protocols and agreements. This article aims to present the prediction and 8-year future forecasting of CH4, N2O and CO2 emissions of Turkey using past annual data between years 1970 and 2018 with grey, autoregressive integrated moving average and double exponential smoothing models. Based on the results, the best prediction performance is reached by DES model followed by ARIMA and GM for all the emissions. MAPEs calculated from the available data and prediction by DES model from 1970 to 2018 are 0.285, 0.355 and 0.408 for CH4, N2O and CO2 in turn. DES future estimations of CH4, N2O and CO2 at 2026 year are determined as 50700 kiloton of CO2 eq., 38100 thousand metric ton of CO2 eq., and 512000 kilotons.","PeriodicalId":17899,"journal":{"name":"Konya Journal of Engineering Sciences","volume":"261 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Konya Journal of Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36306/konjes.1267008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The way of life, consumption habits, urbanization rate, type of energy production and increasing energy need with growing economies and population progressively promote the GHGs emissions to Earth’s atmosphere. GHGs consisting of CH4, N2O, CO2, H2O and HFCs cause the climate change, disrupting ecological balance, melting glaciers with global warming in the last decades. Therefore, the issues of future prediction and reduction of GHGs emissions became crucial for policy makers of Turkey and other countries under the international protocols and agreements. This article aims to present the prediction and 8-year future forecasting of CH4, N2O and CO2 emissions of Turkey using past annual data between years 1970 and 2018 with grey, autoregressive integrated moving average and double exponential smoothing models. Based on the results, the best prediction performance is reached by DES model followed by ARIMA and GM for all the emissions. MAPEs calculated from the available data and prediction by DES model from 1970 to 2018 are 0.285, 0.355 and 0.408 for CH4, N2O and CO2 in turn. DES future estimations of CH4, N2O and CO2 at 2026 year are determined as 50700 kiloton of CO2 eq., 38100 thousand metric ton of CO2 eq., and 512000 kilotons.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用统计方法估算土耳其的温室气体排放量
随着经济和人口的增长,生活方式、消费习惯、城市化率、能源生产类型和日益增长的能源需求都在逐步促进温室气体向地球大气层的排放。过去几十年来,由 CH4、N2O、CO2、H2O 和 HFCs 组成的温室气体导致气候变化,破坏生态平衡,冰川融化,全球变暖。因此,根据国际议定书和协议,未来预测和减少温室气体排放问题对土耳其和其他国家的决策者至关重要。本文旨在利用 1970 年至 2018 年的过去年度数据,采用灰色、自回归综合移动平均和双指数平滑模型,对土耳其的甲烷、一氧化二氮和二氧化碳排放量进行预测和未来 8 年的预测。结果表明,DES 模型的预测效果最佳,其次是 ARIMA 模型和 GM 模型。根据现有数据计算得出的 MAPE 和 DES 模型从 1970 年到 2018 年对 CH4、N2O 和 CO2 的预测值分别为 0.285、0.355 和 0.408。根据 DES 预测,2026 年 CH4、N2O 和 CO2 的未来排放量分别为 50700 千吨 CO2 当量、38100 千吨 CO2 当量和 512000 千吨 CO2 当量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GIS-AHP APPROACH FOR A COMPREHENSIVE FRAMEWORK TO DETERMINE THE SUITABLE REGIONS FOR GEOTHERMAL POWER PLANTS IN IZMIR, TÜRKİYE MACHINE WHELL EDGE DETECTION MORPHOLOGICAL OPERATIONS PRODUCTION OF CuO/ZrO2 NANOCOMPOSITES IN POWDER AND FIBER FORMS DETERMINATION BY NUMERICAL MODELING OF STRESS-STRAIN VARIATIONS RESULTING FROM GALLERY CROSS-SECTION CHANGES IN A LONGWALL TOP COAL CAVING PANEL ENCAPSULATION OF VITAMIN D IN THE EXINE-ALGINATE-CHITOSAN MICROCAPSULE SYSTEM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1