Richa Pandey, Ravinder Kaur, I. Z. Goncalves, Christopher M. U. Neale, Manoj Khanna, Man Singh, Vinay Kumar Sehgal, A. Sarangi, Manjaiah Kanchikeri Math
{"title":"Single vs dual source surface energy balance model based actual evapotranspiration estimation","authors":"Richa Pandey, Ravinder Kaur, I. Z. Goncalves, Christopher M. U. Neale, Manoj Khanna, Man Singh, Vinay Kumar Sehgal, A. Sarangi, Manjaiah Kanchikeri Math","doi":"10.36953/ecj.27532611","DOIUrl":null,"url":null,"abstract":"The current study aims to inter-compare the performance efficiency of the single and the dual source surface energy balance modeling approaches, namely EEFlux and SETMI, respectively for real time catchment scale - crop water demand estimations. For this, the afore-stated two surface energy balance modelling approaches were applied on the Narmada Canal Project, Sanchore, Rajasthan, India for estimating catchment scale actual evapotranspiration (ETa) values for the Rabi cropping seasons of the years 2013-14 and 2018-19, after incorporating the basic satellite data derived inputs viz. Land use, Land surface temperature and Gridded weather data. Due to the non-availability of the catchment scale ground based daily reference evapotranspiration (ETo) values for the study area, the Global Land Data Assimilation System based gridded meteorological data product was utilized, as a substitute for obtaining observed actual evapotranspiration (ETa) values for the investigated Rabi seasons of the study area. These actual evapotranspiration values were compared with those estimated through the single source, EEFlux and the dual source, SETMI modelling approaches to ascertain their comparative performance efficiency through the use of the five statistical indices viz. Mean Absolute Error, Root Mean Square Error, Mean Bias Error, Nash-Sutcliffe Efficiency and the Index of Agreement. The investigations revealed almost at par performance of the two modelling approaches. However, it was concluded that in contrast to the more detailed dual source approach i.e., SETMI, the simple single source approach i.e., EEFlux seemed to be more promising due to its user-friendly implementation and input data automation.","PeriodicalId":12035,"journal":{"name":"Environment Conservation Journal","volume":"482 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environment Conservation Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36953/ecj.27532611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The current study aims to inter-compare the performance efficiency of the single and the dual source surface energy balance modeling approaches, namely EEFlux and SETMI, respectively for real time catchment scale - crop water demand estimations. For this, the afore-stated two surface energy balance modelling approaches were applied on the Narmada Canal Project, Sanchore, Rajasthan, India for estimating catchment scale actual evapotranspiration (ETa) values for the Rabi cropping seasons of the years 2013-14 and 2018-19, after incorporating the basic satellite data derived inputs viz. Land use, Land surface temperature and Gridded weather data. Due to the non-availability of the catchment scale ground based daily reference evapotranspiration (ETo) values for the study area, the Global Land Data Assimilation System based gridded meteorological data product was utilized, as a substitute for obtaining observed actual evapotranspiration (ETa) values for the investigated Rabi seasons of the study area. These actual evapotranspiration values were compared with those estimated through the single source, EEFlux and the dual source, SETMI modelling approaches to ascertain their comparative performance efficiency through the use of the five statistical indices viz. Mean Absolute Error, Root Mean Square Error, Mean Bias Error, Nash-Sutcliffe Efficiency and the Index of Agreement. The investigations revealed almost at par performance of the two modelling approaches. However, it was concluded that in contrast to the more detailed dual source approach i.e., SETMI, the simple single source approach i.e., EEFlux seemed to be more promising due to its user-friendly implementation and input data automation.