GAS SOURCE LOCALIZATION THROUGH DEEP LEARNING METHOD BASED ON GAS DISTRIBUTION MAP DATABASE

Z. H. Mohd Juffry, Kamarulzaman Kamarudin, Abdul Hamid Adom, M. F. Miskon, A. S. Ali Yeon, Abdulnasser Nabil Abdullah
{"title":"GAS SOURCE LOCALIZATION THROUGH DEEP LEARNING METHOD BASED ON GAS DISTRIBUTION MAP DATABASE","authors":"Z. H. Mohd Juffry, Kamarulzaman Kamarudin, Abdul Hamid Adom, M. F. Miskon, A. S. Ali Yeon, Abdulnasser Nabil Abdullah","doi":"10.11113/jurnalteknologi.v86.20186","DOIUrl":null,"url":null,"abstract":"The incident of harmful gas leakage can cause severe damage to the environment and several casualties to human beings while the gas localization system plays a major role in mitigating those causalities. With the advances in artificial intelligence technology, deep learning is able to enhance the accuracy of the gas localization system to locate the gas source. This paper proposes a gas localization system that utilizes three different deep learning models namely DNN, 1DCNN, and 2DCNN to locate the gas source within the gas map. The proposed method involves generating the gas distribution map through the large gas sensor array platform in real-world indoor scenarios. Those models are then trained using the collected database which allows for accurate prediction of the gas source location. The performance of each proposed deep learning model was compared to find the best model demonstrating the highest effectiveness in identifying gas leaks. The study has shown that the 1DCNN has the highest effectiveness in predicting the gas source in the range between 0.0 m to 0.3 m with 90.3% compared to the DNN and 2DCNN models.","PeriodicalId":55763,"journal":{"name":"Jurnal Teknologi","volume":"65 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknologi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11113/jurnalteknologi.v86.20186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The incident of harmful gas leakage can cause severe damage to the environment and several casualties to human beings while the gas localization system plays a major role in mitigating those causalities. With the advances in artificial intelligence technology, deep learning is able to enhance the accuracy of the gas localization system to locate the gas source. This paper proposes a gas localization system that utilizes three different deep learning models namely DNN, 1DCNN, and 2DCNN to locate the gas source within the gas map. The proposed method involves generating the gas distribution map through the large gas sensor array platform in real-world indoor scenarios. Those models are then trained using the collected database which allows for accurate prediction of the gas source location. The performance of each proposed deep learning model was compared to find the best model demonstrating the highest effectiveness in identifying gas leaks. The study has shown that the 1DCNN has the highest effectiveness in predicting the gas source in the range between 0.0 m to 0.3 m with 90.3% compared to the DNN and 2DCNN models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过基于气体分布图数据库的深度学习方法进行气体源定位
有害气体泄漏事件可能会对环境造成严重破坏,并造成人员伤亡,而气体定位系统在减少这些伤亡方面发挥着重要作用。随着人工智能技术的发展,深度学习能够提高气体定位系统定位气体源的准确性。本文提出的瓦斯定位系统利用三种不同的深度学习模型,即 DNN、1DCNN 和 2DCNN,来定位瓦斯地图中的瓦斯源。所提出的方法包括在真实的室内场景中通过大型气体传感器阵列平台生成气体分布图。然后利用收集到的数据库对这些模型进行训练,从而准确预测气源位置。通过比较每个拟议的深度学习模型的性能,找出在识别气体泄漏方面最有效的最佳模型。研究表明,与 DNN 和 2DCNN 模型相比,1DCNN 在预测 0.0 米至 0.3 米范围内的气体源方面具有最高的有效性,达到 90.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
20 weeks
期刊最新文献
Pemodelan Identifikasi Objek Kendaraan Bermotor Menggunakan Faster Region based Convolutional Neural Network (R-CNN) Berbasis Python Pemanfaatan Mikrotik RB942-2ND Menggunakan Metode Firewall Filtering Untuk Keamanan Jaringan Dengan Model Forensikk Battle Royale Console Game Performance Analysis (Case Study: East Jakarta, Indonesia) Pengaruh Suhu Evaporasi-Kristalisasi dan Persentase Gula Batu terhadap Warna Produk Serbuk Jahe Merah (Zingiber officinale) Penyisihan Kandungan Perak dalam Limbah Cair Pencucian Film Melalui Proses Biofiltrasi dengan Tanaman Eceng Gondok
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1