Time series analysis and development of simulation model for monthly rainfall using ARIMA model

P. A. Damor, A. A. Mod, Bhavin Ram, H. V. Parmar
{"title":"Time series analysis and development of simulation model for monthly rainfall using ARIMA model","authors":"P. A. Damor, A. A. Mod, Bhavin Ram, H. V. Parmar","doi":"10.15740/has/ijas/20.1/226-235","DOIUrl":null,"url":null,"abstract":"Rainfall holds critical significance for water resource applications, particularly in rainfed agricultural systems. This study employs the Autoregre ssive Integrated Moving Average (ARIMA) technique, a data mining approach commonly used for time series analysis and future forecasting. Given the increasing importance of climate change forecasting in averting unexpected natural hazards such as floods, frost, forest fires, and droughts, accurate weather data forecasting becomes imperative. The objective of this study was to develop a Seasonal Auto-Regressive Integrative Moving Average (SARIMA) model for forecasting monthly rainfall in Junagadh Station, Gujarat. Utilizing 50 years of historical data (1968 to 2016), the SARIMA model predicts weekly rainfall for the subsequent five years (2018 to 2022). Through comprehensive evaluation using ACF and PACF plots, AIC, SBC, MAPE, and MAE values, the study identifies SARIMA (1,0,0)(3,1,1)12 as the optimal model, offering the most accurate prediction. The robust results affirm that the SARIMA model provides reliable and satisfactory weekly rainfall predictions. This research contributes valuable insights into the precision and efficacy of SARIMA models for rainfall forecasting, aiding in strategic water resource management in the Junagadh region.","PeriodicalId":13858,"journal":{"name":"INTERNATIONAL JOURNAL OF AGRICULTURAL SCIENCES","volume":"34 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"INTERNATIONAL JOURNAL OF AGRICULTURAL SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15740/has/ijas/20.1/226-235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Rainfall holds critical significance for water resource applications, particularly in rainfed agricultural systems. This study employs the Autoregre ssive Integrated Moving Average (ARIMA) technique, a data mining approach commonly used for time series analysis and future forecasting. Given the increasing importance of climate change forecasting in averting unexpected natural hazards such as floods, frost, forest fires, and droughts, accurate weather data forecasting becomes imperative. The objective of this study was to develop a Seasonal Auto-Regressive Integrative Moving Average (SARIMA) model for forecasting monthly rainfall in Junagadh Station, Gujarat. Utilizing 50 years of historical data (1968 to 2016), the SARIMA model predicts weekly rainfall for the subsequent five years (2018 to 2022). Through comprehensive evaluation using ACF and PACF plots, AIC, SBC, MAPE, and MAE values, the study identifies SARIMA (1,0,0)(3,1,1)12 as the optimal model, offering the most accurate prediction. The robust results affirm that the SARIMA model provides reliable and satisfactory weekly rainfall predictions. This research contributes valuable insights into the precision and efficacy of SARIMA models for rainfall forecasting, aiding in strategic water resource management in the Junagadh region.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 ARIMA 模型对月降雨量进行时间序列分析并开发模拟模型
降雨量对水资源应用,尤其是雨水灌溉农业系统具有至关重要的意义。本研究采用了自回归综合移动平均(ARIMA)技术,这是一种常用于时间序列分析和未来预测的数据挖掘方法。鉴于气候变化预测在避免洪水、霜冻、森林火灾和干旱等突发自然灾害方面的重要性与日俱增,准确的天气数据预测势在必行。本研究的目的是开发一个季节自回归整合移动平均(SARIMA)模型,用于预报古吉拉特邦朱纳加德站的月降雨量。利用 50 年的历史数据(1968 年至 2016 年),SARIMA 模型预测了随后五年(2018 年至 2022 年)的周降雨量。通过使用 ACF 和 PACF 图、AIC、SBC、MAPE 和 MAE 值进行综合评估,该研究确定 SARIMA (1,0,0)(3,1,1)12 为最佳模型,可提供最准确的预测。稳健的结果证实,SARIMA 模型能提供可靠、令人满意的周降雨量预测。这项研究对 SARIMA 模型在降雨预测方面的精确性和有效性提出了宝贵的见解,有助于朱纳加德地区的战略性水资源管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
2
审稿时长
16 weeks
期刊最新文献
Profile of farmers about impact of farmer field school on soybean growers Importance of sensor-based nitrogen application and effect of growth parameters in wheat crop Development of evaporative cooling mobile vending cart for vegetables Geo thermal energy - Clean, safe and renewable - A review study Profile characteristics of pomegranate growers of North Karnataka
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1