OPTIMASI METODE JARINGAN SARAF TIRUAN BACKPROPAGATION UNTUK PERAMALAN CURAH HUJAN BULANAN DI KOTA DENPASAR

Fadia Nailah, D. Larasati, S. Siswanto, Anisa Kalondeng
{"title":"OPTIMASI METODE JARINGAN SARAF TIRUAN BACKPROPAGATION UNTUK PERAMALAN CURAH HUJAN BULANAN DI KOTA DENPASAR","authors":"Fadia Nailah, D. Larasati, S. Siswanto, Anisa Kalondeng","doi":"10.26740/mathunesa.v12n1.p134-140","DOIUrl":null,"url":null,"abstract":"Rainfall is a natural phenomenon that depends on many factors that are an important part of life on earth. The high intensity of rainfall can lead to disasters. Therefore, this study aims to forecast monthly rainfall. The data used was obtained from BMKG Bali Province, namely monthly rainfall data for Denpasar City from 2009 to 2019. The method used is backpropagation artificial neural network. The artificial neural network method is an information processing method inspired by the human nervous system. Optimal backpropagation network architecture is needed so that the prediction results have a low error rate, by optimizing the use of training data and test data taken from sample data. Based on the results of the testing and prediction process with the parameters of one hidden layer with 50 neorons, epoch 11 and learning rate 0.01, the results obtained with the MSE value in network testing are 0.037. So it can be concluded that the backpropagation artificial neural network method has good accuracy results used as a reference for decision making in predicting monthly rainfall in Denpasar City in the future. \n ","PeriodicalId":516694,"journal":{"name":"MATHunesa: Jurnal Ilmiah Matematika","volume":"26 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MATHunesa: Jurnal Ilmiah Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26740/mathunesa.v12n1.p134-140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Rainfall is a natural phenomenon that depends on many factors that are an important part of life on earth. The high intensity of rainfall can lead to disasters. Therefore, this study aims to forecast monthly rainfall. The data used was obtained from BMKG Bali Province, namely monthly rainfall data for Denpasar City from 2009 to 2019. The method used is backpropagation artificial neural network. The artificial neural network method is an information processing method inspired by the human nervous system. Optimal backpropagation network architecture is needed so that the prediction results have a low error rate, by optimizing the use of training data and test data taken from sample data. Based on the results of the testing and prediction process with the parameters of one hidden layer with 50 neorons, epoch 11 and learning rate 0.01, the results obtained with the MSE value in network testing are 0.037. So it can be concluded that the backpropagation artificial neural network method has good accuracy results used as a reference for decision making in predicting monthly rainfall in Denpasar City in the future.  
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化登巴萨市月降雨量预报的反向传播人工神经网络方法
降雨是一种自然现象,取决于许多因素,是地球生命的重要组成部分。高强度降雨会导致灾害。因此,本研究旨在预测月降雨量。所使用的数据来自巴厘岛省 BMKG,即登巴萨市 2009 年至 2019 年的月降雨量数据。使用的方法是反向传播人工神经网络。人工神经网络方法是一种受人类神经系统启发的信息处理方法。需要优化反向传播网络结构,通过优化使用从样本数据中提取的训练数据和测试数据,使预测结果具有较低的错误率。根据测试和预测过程的结果,参数为一个隐层,50 个神经元,epoch 11,学习率 0.01,网络测试的 MSE 值为 0.037。因此可以得出结论,反向传播人工神经网络方法具有良好的准确性,可作为登巴萨市未来预测月降雨量的决策参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PENERAPAN ALGORITMA STUDENT PSYCHOLOGY BASED OPTIMIZATION (SPBO) PADA OPEN VEHICLE ROUTING PROBLEM (OVRP) IMPLEMENTASI DIMENSI FRAKTAL BOX COUNTING DAN K-MEANS DALAM KLASIFIKASI JENIS IKAN LAUT BERDASARKAN CORAK TUBUH PENAMBAHAN METODE NEURAL NETWORK DALAM PEMODELAN GSTAR-SUR UNTUK MENGATASI KASUS NON LINIER PADA PERAMALAN DATA CURAH HUJAN Peramalan PDRB PERAMALAN PDRB DI JAWA TIMUR MENGGUNAKAN MODEL ARIMAX DENGAN VARIABElL EKSOGEN EKSPOR-IMPOR OPTIMASI PERSEDIAAN BAHAN BAKU DAN PRODUKSI USAHA GANEPO PUTRI YOSE DENGAN MENGGUNAKAN ALGORITMA GREY WOLF OPTIMIZER
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1