{"title":"Mathematical Modelling and Deep Learning: Innovations in E-Commerce Sentiment Analysis","authors":"Et al. Ashish Suresh Awate","doi":"10.52783/anvi.v27.317","DOIUrl":null,"url":null,"abstract":"This research explores e-commerce dynamics, focusing on the challenge of predicting customer churn using deep learning [65]. It integrates and analyses both textual and transactional data, including social media posts and customer feedback [59]. The approach uses an advanced deep learning model, involving data collection, pre-processing, and feature extraction [40]. Novel methods fuse data to create a detailed customer profile combining sentiment analysis with behavioural insights derived from transaction data [25]. The deep learning architecture is designed to analyse and predict customer sentiments and purchasing behaviours, informed by the latest research [65]. This study is significant as it provides an innovative solution for predicting customer churn in e-commerce, aiding sustainability [45]. It also enables targeted retention strategies and personalized customer engagement [59]. Additionally, it contributes insights to big data analytics and customer relationship management in e-commerce, showcasing deep learning's potential in transforming business practices and enhancing customer experience [40].","PeriodicalId":40035,"journal":{"name":"Advances in Nonlinear Variational Inequalities","volume":"12 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Nonlinear Variational Inequalities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52783/anvi.v27.317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
This research explores e-commerce dynamics, focusing on the challenge of predicting customer churn using deep learning [65]. It integrates and analyses both textual and transactional data, including social media posts and customer feedback [59]. The approach uses an advanced deep learning model, involving data collection, pre-processing, and feature extraction [40]. Novel methods fuse data to create a detailed customer profile combining sentiment analysis with behavioural insights derived from transaction data [25]. The deep learning architecture is designed to analyse and predict customer sentiments and purchasing behaviours, informed by the latest research [65]. This study is significant as it provides an innovative solution for predicting customer churn in e-commerce, aiding sustainability [45]. It also enables targeted retention strategies and personalized customer engagement [59]. Additionally, it contributes insights to big data analytics and customer relationship management in e-commerce, showcasing deep learning's potential in transforming business practices and enhancing customer experience [40].