Mathematical Modelling and Deep Learning: Innovations in E-Commerce Sentiment Analysis

Et al. Ashish Suresh Awate
{"title":"Mathematical Modelling and Deep Learning: Innovations in E-Commerce Sentiment Analysis","authors":"Et al. Ashish Suresh Awate","doi":"10.52783/anvi.v27.317","DOIUrl":null,"url":null,"abstract":"This research explores e-commerce dynamics, focusing on the challenge of predicting customer churn using deep learning [65]. It integrates and analyses both textual and transactional data, including social media posts and customer feedback [59]. The approach uses an advanced deep learning model, involving data collection, pre-processing, and feature extraction [40]. Novel methods fuse data to create a detailed customer profile combining sentiment analysis with behavioural insights derived from transaction data [25]. The deep learning architecture is designed to analyse and predict customer sentiments and purchasing behaviours, informed by the latest research [65]. This study is significant as it provides an innovative solution for predicting customer churn in e-commerce, aiding sustainability [45]. It also enables targeted retention strategies and personalized customer engagement [59]. Additionally, it contributes insights to big data analytics and customer relationship management in e-commerce, showcasing deep learning's potential in transforming business practices and enhancing customer experience [40].","PeriodicalId":40035,"journal":{"name":"Advances in Nonlinear Variational Inequalities","volume":"12 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Nonlinear Variational Inequalities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52783/anvi.v27.317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

This research explores e-commerce dynamics, focusing on the challenge of predicting customer churn using deep learning [65]. It integrates and analyses both textual and transactional data, including social media posts and customer feedback [59]. The approach uses an advanced deep learning model, involving data collection, pre-processing, and feature extraction [40]. Novel methods fuse data to create a detailed customer profile combining sentiment analysis with behavioural insights derived from transaction data [25]. The deep learning architecture is designed to analyse and predict customer sentiments and purchasing behaviours, informed by the latest research [65]. This study is significant as it provides an innovative solution for predicting customer churn in e-commerce, aiding sustainability [45]. It also enables targeted retention strategies and personalized customer engagement [59]. Additionally, it contributes insights to big data analytics and customer relationship management in e-commerce, showcasing deep learning's potential in transforming business practices and enhancing customer experience [40].
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数学建模与深度学习:电子商务情感分析的创新
这项研究探讨了电子商务动态,重点关注利用深度学习预测客户流失的挑战[65]。它整合并分析了文本数据和交易数据,包括社交媒体帖子和客户反馈[59]。该方法使用先进的深度学习模型,涉及数据收集、预处理和特征提取 [40]。新方法将数据融合在一起,结合情感分析和从交易数据中获得的行为洞察力,创建详细的客户档案[25]。深度学习架构旨在分析和预测客户情绪和购买行为,并参考最新研究成果[65]。这项研究意义重大,因为它为预测电子商务中的客户流失提供了创新解决方案,有助于可持续发展[45]。它还能制定有针对性的客户挽留战略和个性化的客户参与[59]。此外,它还为电子商务中的大数据分析和客户关系管理提供了见解,展示了深度学习在改变业务实践和提升客户体验方面的潜力[40]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.20
自引率
0.00%
发文量
0
期刊最新文献
Nonlinear Elliptic Equations on the Sierpiński Carpet On Hosoya and Schultz Polynomials of Chain of Pentagonal Graph Integral Solutions for the Diophantine Equation of Higher Degree with Six Unknowns x⁶ − y⁶ − 3456z³ = 800(p² − q²)R⁸ Mathematical Modeling and Analysis of Energy Aware Probabilistic Distribution Based Cluster Head Selection Algorithm for Wireless Sensor Networks Numerical Simulation and Mathematical Analysis of Meta Heuristic MPPT System for Solar Photovoltaic Applications Under Non-Linear Operational Conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1