Multi-objective vehicle routing problem with time windows under uncertain conditions

jiashuo guo, Yuxin Liu
{"title":"Multi-objective vehicle routing problem with time windows under uncertain conditions","authors":"jiashuo guo, Yuxin Liu","doi":"10.1117/12.3014402","DOIUrl":null,"url":null,"abstract":"In this paper, we research the multi-objective vehicle routing problem with time windows under uncertainty. For solving it efficiently, the robust multi-objective particle swarm optimization incorporates the simulated annealing algorithm is proposed. The new algorithm aims to improve the local search abilities of particles. Experimental results show that the proposed algorithm outperforms the traditional the robust multi-objective particle swarm optimization algorithm on the selected problem sets as the uncertain interference intensity increases.","PeriodicalId":516634,"journal":{"name":"International Conference on Algorithm, Imaging Processing and Machine Vision (AIPMV 2023)","volume":"18 4","pages":"129692C - 129692C-6"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Algorithm, Imaging Processing and Machine Vision (AIPMV 2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3014402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we research the multi-objective vehicle routing problem with time windows under uncertainty. For solving it efficiently, the robust multi-objective particle swarm optimization incorporates the simulated annealing algorithm is proposed. The new algorithm aims to improve the local search abilities of particles. Experimental results show that the proposed algorithm outperforms the traditional the robust multi-objective particle swarm optimization algorithm on the selected problem sets as the uncertain interference intensity increases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不确定条件下带有时间窗口的多目标车辆路线问题
本文研究了不确定条件下带时间窗的多目标车辆路由问题。为了高效地解决该问题,本文提出了结合模拟退火算法的鲁棒多目标粒子群优化算法。新算法旨在提高粒子的局部搜索能力。实验结果表明,随着不确定干扰强度的增加,所提出的算法在所选问题集上优于传统的鲁棒多目标粒子群优化算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The ship classification and detection method of optical remote sensing image based on improved YOLOv7-tiny Collaborative filtering recommendation method based on graph convolutional neural networks Research on the simplification of building complex model under multi-factor constraints Improved ant colony algorithm based on artificial gravity field for adaptive dynamic path planning Application analysis of three-dimensional laser scanning technology in the protection of dong drum tower in Sanjiang county
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1