Image segmentation of rail surface defects based on fractional order particle swarm optimization 2D-Otsu algorithm

Na Geng, Hu Sheng, Weizhi Sun, Yifeng Wang, Tan Yu, Zihan Liu
{"title":"Image segmentation of rail surface defects based on fractional order particle swarm optimization 2D-Otsu algorithm","authors":"Na Geng, Hu Sheng, Weizhi Sun, Yifeng Wang, Tan Yu, Zihan Liu","doi":"10.1117/12.3014444","DOIUrl":null,"url":null,"abstract":"Under the influence of high density operation and natural environment, the rail surface will appear abrasion damage, which will affect the safety and comfort of the train. Rail surface defect detection is an important part to ensure the safe and efficient operation of railway system. In order to distinguish whether there are defects on the rail surface, a method of rail surface defect image segmentation based on FPSO 2D-Otsu algorithm is proposed. The rail image is denoised and enhanced by adaptive fractional calculus, and then the rail image is segmented by FPSO 2D-Otsu algorithm. In order to verify the accuracy of the algorithm, the proposed algorithm is compared with PSO 2D-Otsu image segmentation algorithm. The experimental results show that the accuracy of FPSO 2D-Otsu algorithm in rail image segmentation is improved from 48.76% to 83.59% compared with PSO 2D-Otsu algorithm.","PeriodicalId":516634,"journal":{"name":"International Conference on Algorithm, Imaging Processing and Machine Vision (AIPMV 2023)","volume":"226 1","pages":"129690A - 129690A-4"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Algorithm, Imaging Processing and Machine Vision (AIPMV 2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3014444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Under the influence of high density operation and natural environment, the rail surface will appear abrasion damage, which will affect the safety and comfort of the train. Rail surface defect detection is an important part to ensure the safe and efficient operation of railway system. In order to distinguish whether there are defects on the rail surface, a method of rail surface defect image segmentation based on FPSO 2D-Otsu algorithm is proposed. The rail image is denoised and enhanced by adaptive fractional calculus, and then the rail image is segmented by FPSO 2D-Otsu algorithm. In order to verify the accuracy of the algorithm, the proposed algorithm is compared with PSO 2D-Otsu image segmentation algorithm. The experimental results show that the accuracy of FPSO 2D-Otsu algorithm in rail image segmentation is improved from 48.76% to 83.59% compared with PSO 2D-Otsu algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于分数阶粒子群优化 2D-Otsu 算法的轨道表面缺陷图像分割
在高密度运行和自然环境的影响下,钢轨表面会出现磨损损伤,从而影响列车的安全性和舒适性。钢轨表面缺陷检测是确保铁路系统安全高效运行的重要环节。为了区分钢轨表面是否存在缺陷,本文提出了一种基于 FPSO 2D-Otsu 算法的钢轨表面缺陷图像分割方法。利用自适应分数微积分对钢轨图像进行去噪和增强,然后利用 FPSO 2D-Otsu 算法对钢轨图像进行分割。为了验证算法的准确性,将提出的算法与 PSO 2D-Otsu 图像分割算法进行了比较。实验结果表明,与 PSO 2D-Otsu 算法相比,FPSO 2D-Otsu 算法在铁路图像分割中的准确率从 48.76% 提高到 83.59%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The ship classification and detection method of optical remote sensing image based on improved YOLOv7-tiny Collaborative filtering recommendation method based on graph convolutional neural networks Research on the simplification of building complex model under multi-factor constraints Improved ant colony algorithm based on artificial gravity field for adaptive dynamic path planning Application analysis of three-dimensional laser scanning technology in the protection of dong drum tower in Sanjiang county
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1