Determination of fracture toughness of the thin diamond-like coatings by nanoindentation

V. Lapitskaya, T. Kuznetsova, S. Chizhik, A. Rogachev
{"title":"Determination of fracture toughness of the thin diamond-like coatings by nanoindentation","authors":"V. Lapitskaya, T. Kuznetsova, S. Chizhik, A. Rogachev","doi":"10.29235/1561-8358-2023-68-4-271-279","DOIUrl":null,"url":null,"abstract":"The results of a study of the structure and physical and mechanical properties of diamond-like coatings (DLC) on sublayers of different hardness are presented. The coatings have high hardness, but at the same time they are prone to delamination and destruction due to high residual internal stresses. The fracture toughness was determined by the nanoindentation method and the energy calculation method using approach-retraction curves. Atomic force microscopy was used to study the surface structure and deformation region after nanoindentation. A change in the surface structure and roughness of DLC was established depending on the sublayer. Low roughness is characteristic of DLC on a copper sublayer. Applying а titanium sublayer leads to an increase in the elastic modulus of the DLC. The microhardness of both coatings is practically the same. AFM studies have shown two different types of DLC deformation after nanoindentation with a Berkovich pyramid. A crack on coatings with a copper sublayer propagates around the indentation print, and on an DLC with a titanium sublayer, it propagates along the edges of the indentation. It was found that the fracture toughness of DLC on a Ti sublayer is 33 % lower compared to DLC on a Cu sublayer due to a decrease in stress relaxation inside the coating. The considered coatings can be used in microelectronics for protection against mechanical damage on contacting and rubbing surfaces.","PeriodicalId":516810,"journal":{"name":"Proceedings of the National Academy of Sciences of Belarus. Physical-technical series","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of Belarus. Physical-technical series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29235/1561-8358-2023-68-4-271-279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The results of a study of the structure and physical and mechanical properties of diamond-like coatings (DLC) on sublayers of different hardness are presented. The coatings have high hardness, but at the same time they are prone to delamination and destruction due to high residual internal stresses. The fracture toughness was determined by the nanoindentation method and the energy calculation method using approach-retraction curves. Atomic force microscopy was used to study the surface structure and deformation region after nanoindentation. A change in the surface structure and roughness of DLC was established depending on the sublayer. Low roughness is characteristic of DLC on a copper sublayer. Applying а titanium sublayer leads to an increase in the elastic modulus of the DLC. The microhardness of both coatings is practically the same. AFM studies have shown two different types of DLC deformation after nanoindentation with a Berkovich pyramid. A crack on coatings with a copper sublayer propagates around the indentation print, and on an DLC with a titanium sublayer, it propagates along the edges of the indentation. It was found that the fracture toughness of DLC on a Ti sublayer is 33 % lower compared to DLC on a Cu sublayer due to a decrease in stress relaxation inside the coating. The considered coatings can be used in microelectronics for protection against mechanical damage on contacting and rubbing surfaces.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用纳米压痕法测定类金刚石薄涂层的断裂韧性
本文介绍了对不同硬度底层上的类金刚石涂层(DLC)的结构、物理和机械性能的研究结果。涂层具有很高的硬度,但同时由于残余内应力较大,容易分层和破坏。断裂韧性是通过纳米压痕法和能量计算法(使用接近-回缩曲线)测定的。原子力显微镜用于研究纳米压痕后的表面结构和变形区域。结果表明,DLC 的表面结构和粗糙度随子层的不同而变化。低粗糙度是铜底层 DLC 的特征。钛底层会导致 DLC 的弹性模量增加。两种涂层的显微硬度几乎相同。原子力显微镜(AFM)研究显示,在使用伯克维奇金字塔进行纳米压痕后,DLC 发生了两种不同类型的变形。带有铜亚层的涂层上的裂纹在压痕周围扩展,而带有钛亚层的 DLC 上的裂纹则沿着压痕边缘扩展。研究发现,由于涂层内部应力松弛的减少,钛底层 DLC 的断裂韧性比铜底层 DLC 低 33%。所考虑的涂层可用于微电子领域,防止接触面和摩擦面受到机械损伤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The problem of protecting a person from the effects of low-frequency electromagnetic fields in modern society. Possible ways to solve it Assessment of the influence of the length and number of heat pipes on the efficiency of the removal of excess thermal energy from the processor Analysis of the accumulation of β-emitting radionuclides in the production of radiopharmaceuticals based on 18F using the IBA CYCLONE 18/9 HC cyclotron Development and modeling of algorithms for calculating target angle in the coordinate system of the onboard radar Thermodynamic modeling of silicon carbide formation during the Acheson process in non-stoichiometric mixtures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1