Ceramic matrix composite based on silicon carbide and nanostructured nitrogen-doped carbon for supercapacitor electrodes

D. V. Solovei, P. Grinchuk, M. Kiyashko, A. V. Akulich
{"title":"Ceramic matrix composite based on silicon carbide and nanostructured nitrogen-doped carbon for supercapacitor electrodes","authors":"D. V. Solovei, P. Grinchuk, M. Kiyashko, A. V. Akulich","doi":"10.29235/1561-8358-2023-68-4-280-292","DOIUrl":null,"url":null,"abstract":"The results of studies on the production of a porous ceramic-matrix composite material C–N/SiC from silicon carbide and nitrogen-doped nanostructured carbon for subsequent use as supercapacitor electrodes are presented. The material is formed by pressing silicon carbide micropowder (1 µm) and impregnating with a solution of carbamide (nitrogen source) in phenol-formaldehyde varnish (carbon source), curing and pyrolysis in a nitrogen atmosphere. The maximum concentration of carbamide was obtained in the solution (16 wt.%) at 50 ºС with a viscosity of 134.3 mPa⋅s. Thermogravimetric analysis in nitrogen of the cured solution revealed multistage decomposition with a residual mass of C–N of 48 % at 1000 ºС. Studies of the elemental composition showed a nitrogen content of 1.4 wt.% in C–N/SiC composite (up to 7 % of C–N active mass). In the composite structure, the C–N carbon-nitrogen layer (up to 12 wt.%) distributed inside the matrix pores and covering the SiC grains is X-ray amorphous has a complex nanoscale relief with an average pore size of 1.0–1.5 nm. According to electrochemical studies, the specific capacitance of the C–N/SiC material and the C–N active layer is 16.84 and 153.2 F/g respectively, and the equivalent resistance of the test supercapacitor cell with C–N/SiC electrodes is 0.567 Ohm for samples with maximum doping. The electrodes operate according to the sorption-desorption mechanism of charge accumulation and release, which is typical for a classic supercapacitor based on a double electric layer without the presence of redox reactions on the electrodes. The influence of technological regimes of pyrolysis on the electrophysical parameters of the cell is revealed: lower values of the pyrolysis temperature and nitrogen pressure in the chamber lead to an increase of the material specific capacitance and reduction of the cell equivalent resistance. The obtained results demonstrate the possibility of utilizing C–N/SiC material for the manufacture of supercapacitor electrodes.","PeriodicalId":516810,"journal":{"name":"Proceedings of the National Academy of Sciences of Belarus. Physical-technical series","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of Belarus. Physical-technical series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29235/1561-8358-2023-68-4-280-292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The results of studies on the production of a porous ceramic-matrix composite material C–N/SiC from silicon carbide and nitrogen-doped nanostructured carbon for subsequent use as supercapacitor electrodes are presented. The material is formed by pressing silicon carbide micropowder (1 µm) and impregnating with a solution of carbamide (nitrogen source) in phenol-formaldehyde varnish (carbon source), curing and pyrolysis in a nitrogen atmosphere. The maximum concentration of carbamide was obtained in the solution (16 wt.%) at 50 ºС with a viscosity of 134.3 mPa⋅s. Thermogravimetric analysis in nitrogen of the cured solution revealed multistage decomposition with a residual mass of C–N of 48 % at 1000 ºС. Studies of the elemental composition showed a nitrogen content of 1.4 wt.% in C–N/SiC composite (up to 7 % of C–N active mass). In the composite structure, the C–N carbon-nitrogen layer (up to 12 wt.%) distributed inside the matrix pores and covering the SiC grains is X-ray amorphous has a complex nanoscale relief with an average pore size of 1.0–1.5 nm. According to electrochemical studies, the specific capacitance of the C–N/SiC material and the C–N active layer is 16.84 and 153.2 F/g respectively, and the equivalent resistance of the test supercapacitor cell with C–N/SiC electrodes is 0.567 Ohm for samples with maximum doping. The electrodes operate according to the sorption-desorption mechanism of charge accumulation and release, which is typical for a classic supercapacitor based on a double electric layer without the presence of redox reactions on the electrodes. The influence of technological regimes of pyrolysis on the electrophysical parameters of the cell is revealed: lower values of the pyrolysis temperature and nitrogen pressure in the chamber lead to an increase of the material specific capacitance and reduction of the cell equivalent resistance. The obtained results demonstrate the possibility of utilizing C–N/SiC material for the manufacture of supercapacitor electrodes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超级电容器电极用基于碳化硅和纳米结构掺氮碳的陶瓷基复合材料
本文介绍了利用碳化硅和掺氮纳米结构碳生产多孔陶瓷基复合材料 C-N/SiC 的研究成果,该材料随后将用作超级电容器电极。这种材料是通过压制碳化硅微粉(1 微米)并在苯酚-甲醛清漆(碳源)中浸渍碳酰胺(氮源)溶液,然后在氮气环境中固化和热解形成的。在 50 ºС 时,溶液中的碳酰胺浓度(16 wt.%)达到最大,粘度为 134.3 mPa⋅s。在氮气中对固化溶液进行的热重分析表明,在 1000 ºС 时,C-N 的多级分解残留量为 48%。对元素组成的研究表明,C-N/SiC 复合材料中的氮含量为 1.4 wt.%(高达 C-N 有效质量的 7%)。在复合结构中,分布在基体孔隙内并覆盖在 SiC 晶粒上的 C-N 碳氮层(最多 12 重量%)是 X 射线无定形的,具有复杂的纳米级浮雕,平均孔径为 1.0-1.5 纳米。根据电化学研究,C-N/SiC 材料和 C-N 活性层的比电容分别为 16.84 和 153.2 F/g,对于掺杂量最大的样品,带有 C-N/SiC 电极的超级电容器电池测试的等效电阻为 0.567 欧姆。电极根据电荷积累和释放的吸附-解吸机制工作,这是典型的基于双电层的超级电容器,电极上不存在氧化还原反应。研究揭示了热解技术条件对电池电物理参数的影响:较低的热解温度值和腔室中的氮气压力会导致材料比电容的增加和电池等效电阻的降低。研究结果证明了利用 C-N/SiC 材料制造超级电容器电极的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The problem of protecting a person from the effects of low-frequency electromagnetic fields in modern society. Possible ways to solve it Assessment of the influence of the length and number of heat pipes on the efficiency of the removal of excess thermal energy from the processor Analysis of the accumulation of β-emitting radionuclides in the production of radiopharmaceuticals based on 18F using the IBA CYCLONE 18/9 HC cyclotron Development and modeling of algorithms for calculating target angle in the coordinate system of the onboard radar Thermodynamic modeling of silicon carbide formation during the Acheson process in non-stoichiometric mixtures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1