{"title":"CROSS SECTION ESTIMATION FOR HEAVY ION NUCLEAR REACTIONS WITH A CASCADE CODE OF FUSION EVAPORATION","authors":"Daniel Castiblanco","doi":"10.15446/mo.n68.106810","DOIUrl":null,"url":null,"abstract":"This article presents a study of fusion-evaporation nuclear reactions. Starting from a detailed description of the semi-classical theoretical framework behind this nuclear reaction, quantities such as the cross section of compound nucleus formation and various evaporation residues after its formation, as well as their cross sections (proportional to the events number), were estimated by means of a Python code. The code splits the compound nucleus formation process and its subsequent decay into several residual nuclei, which occurs as a sequential particle emission. In order to prioritize a first approximation theory, different nuclear models, with semi-classical and statistical origin, related to projectile-target fusion, light particle evaporation (n, p, α) and fission, were described in detail.\nThe values obtained with the computational routine developed were compared with experimental values and results from the PACE code. Cross sections were calculated for about 90 proposed reactions that produce residues with excess protons. In general, the results obtained show significant discrepancies, especially in heavy nuclei reactions, although some agreements are found even taking into account the limitations of the code. The main reason for this discrepancy may be associated with the lack or overestimation of some channels which may affect the proportion of events. This motivates a more sophisticated analysis in the future that could allow a wider range of channels.","PeriodicalId":512999,"journal":{"name":"MOMENTO","volume":"110 1-3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MOMENTO","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15446/mo.n68.106810","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This article presents a study of fusion-evaporation nuclear reactions. Starting from a detailed description of the semi-classical theoretical framework behind this nuclear reaction, quantities such as the cross section of compound nucleus formation and various evaporation residues after its formation, as well as their cross sections (proportional to the events number), were estimated by means of a Python code. The code splits the compound nucleus formation process and its subsequent decay into several residual nuclei, which occurs as a sequential particle emission. In order to prioritize a first approximation theory, different nuclear models, with semi-classical and statistical origin, related to projectile-target fusion, light particle evaporation (n, p, α) and fission, were described in detail.
The values obtained with the computational routine developed were compared with experimental values and results from the PACE code. Cross sections were calculated for about 90 proposed reactions that produce residues with excess protons. In general, the results obtained show significant discrepancies, especially in heavy nuclei reactions, although some agreements are found even taking into account the limitations of the code. The main reason for this discrepancy may be associated with the lack or overestimation of some channels which may affect the proportion of events. This motivates a more sophisticated analysis in the future that could allow a wider range of channels.