Research on hydrogen fuel cell backup power for metal hydride hydrogen storage system

IF 3.1 Q1 Mathematics Applied Mathematics and Nonlinear Sciences Pub Date : 2024-01-01 DOI:10.2478/amns-2024-0027
Hang Zhang, Jun Pan, Jinyong Lei, Keying Feng, Tianbao Ma
{"title":"Research on hydrogen fuel cell backup power for metal hydride hydrogen storage system","authors":"Hang Zhang, Jun Pan, Jinyong Lei, Keying Feng, Tianbao Ma","doi":"10.2478/amns-2024-0027","DOIUrl":null,"url":null,"abstract":"\n Hydrogen fuel cells are characterized by non-pollution, high efficiency and long power supply time, and they are increasingly used as backup power systems in substations, communication base stations and other fields. In this paper, based on the thermodynamic model of the hydride hydrogen storage system, the relationship between pressure, composition, and temperature in metal hydride hydrogen storage is quantitatively analyzed using a PCT curve. The hydrogen fuel power supply is used as the overall backup power supply of the DC system, and the hydrogen-fuel integrated backup power supply is established to realize the uninterrupted switching between the utility power and the backup power supply. Finally, the working process of the backup power supply and the reaction process of hydrogen are analyzed to test the feasibility of a hydrogen fuel cell backup power supply. The results show that the operating current climbs to the end of 80 A under the 5 kW workload demand of the communication equipment. In addition, the hydrogen absorption reaction rate was 0.29 Mpa, and the hydrogen release reaction rate was 0.21 Mpa at a temperature of 291 K. This study has developed a fuel cell backup power system that can provide uninterruptible backup power and has a wide market capacity and application prospects.","PeriodicalId":52342,"journal":{"name":"Applied Mathematics and Nonlinear Sciences","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Nonlinear Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amns-2024-0027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogen fuel cells are characterized by non-pollution, high efficiency and long power supply time, and they are increasingly used as backup power systems in substations, communication base stations and other fields. In this paper, based on the thermodynamic model of the hydride hydrogen storage system, the relationship between pressure, composition, and temperature in metal hydride hydrogen storage is quantitatively analyzed using a PCT curve. The hydrogen fuel power supply is used as the overall backup power supply of the DC system, and the hydrogen-fuel integrated backup power supply is established to realize the uninterrupted switching between the utility power and the backup power supply. Finally, the working process of the backup power supply and the reaction process of hydrogen are analyzed to test the feasibility of a hydrogen fuel cell backup power supply. The results show that the operating current climbs to the end of 80 A under the 5 kW workload demand of the communication equipment. In addition, the hydrogen absorption reaction rate was 0.29 Mpa, and the hydrogen release reaction rate was 0.21 Mpa at a temperature of 291 K. This study has developed a fuel cell backup power system that can provide uninterruptible backup power and has a wide market capacity and application prospects.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
金属氢化物储氢系统的氢燃料电池备用电源研究
氢燃料电池具有无污染、效率高、供电时间长等特点,越来越多地被用作变电站、通信基站等领域的备用电源系统。本文基于氢化物储氢系统的热力学模型,利用 PCT 曲线定量分析了金属氢化物储氢系统中压力、成分和温度之间的关系。将氢燃料电源作为直流系统的整体备用电源,建立氢燃料一体化备用电源,实现市电与备用电源的不间断切换。最后,分析了备用电源的工作过程和氢气的反应过程,检验了氢燃料电池备用电源的可行性。结果表明,在通信设备 5 kW 的工作负荷需求下,工作电流攀升至 80 A。此外,在温度为 291 K 时,氢气吸收反应速率为 0.29 Mpa,氢气释放反应速率为 0.21 Mpa。该研究开发了一种燃料电池备用电源系统,可提供不间断备用电源,具有广阔的市场容量和应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Mathematics and Nonlinear Sciences
Applied Mathematics and Nonlinear Sciences Engineering-Engineering (miscellaneous)
CiteScore
2.90
自引率
25.80%
发文量
203
期刊最新文献
Research on Optimization of University English Practice Teaching Mode Based on Graph Structure in Online Learning Environment Effective Application of Information Technology in Physical Education Teaching in the Era of Big Data Research on Digital Distribution Network Micro-application and Precise Control of Distribution Operations Based on Grid Resource Business Center Differential Analysis of Stylistic Features in English Translation Teaching Based on Semantic Contrastive Analysis Research on Informatization Mode of Higher Education Management and Student Cultivation Mechanism in the Internet Era
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1