Using AI-Enhanced UAVs to Detect and Size Marine Contaminations

O. Eldirdiry, Navid Nasiri, Ahmed Al Maashari, H. Bourdoucen, J. Ghommam, Ashraf Saleem, G. A. Rawas, A. Al-Kamzari, Ahmed Ammari
{"title":"Using AI-Enhanced UAVs to Detect and Size Marine Contaminations","authors":"O. Eldirdiry, Navid Nasiri, Ahmed Al Maashari, H. Bourdoucen, J. Ghommam, Ashraf Saleem, G. A. Rawas, A. Al-Kamzari, Ahmed Ammari","doi":"10.1109/UVS59630.2024.10467155","DOIUrl":null,"url":null,"abstract":"This paper explores the utilization of unmanned aerial vehicles, remote sensing, and machine vision to detect and estimate the size of contaminations in seawater. The study outlines the essential setups and adjustments to simulate this process in indoor and outdoor settings. The proposed system is designed to chart the optimal path for a quadrotor, utilized in these experiments, allowing it to navigate and pinpoint oil spill locations within the test arena. The drone successfully detects and accurately reports the oil spill's location across multiple trials. The results confirm the effectiveness of the proposed system in detecting and assessing oil spills, showcasing its potential in real-world applications.","PeriodicalId":518078,"journal":{"name":"2024 2nd International Conference on Unmanned Vehicle Systems-Oman (UVS)","volume":"8 6","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 2nd International Conference on Unmanned Vehicle Systems-Oman (UVS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UVS59630.2024.10467155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper explores the utilization of unmanned aerial vehicles, remote sensing, and machine vision to detect and estimate the size of contaminations in seawater. The study outlines the essential setups and adjustments to simulate this process in indoor and outdoor settings. The proposed system is designed to chart the optimal path for a quadrotor, utilized in these experiments, allowing it to navigate and pinpoint oil spill locations within the test arena. The drone successfully detects and accurately reports the oil spill's location across multiple trials. The results confirm the effectiveness of the proposed system in detecting and assessing oil spills, showcasing its potential in real-world applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用人工智能增强型无人机检测和确定海洋污染的规模
本文探讨了如何利用无人飞行器、遥感和机器视觉来检测和估算海水中污染物的大小。研究概述了在室内和室外环境中模拟这一过程的基本设置和调整。所提议的系统旨在为这些实验中使用的四旋翼无人机绘制最佳路径图,使其能够在测试场内导航并精确定位溢油位置。无人机在多次试验中成功探测并准确报告了溢油位置。实验结果证实了拟议系统在检测和评估溢油方面的有效性,展示了其在实际应用中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cross-layer Bayesian Network for UAV Health Monitoring Using AI-Enhanced UAVs to Detect and Size Marine Contaminations A State-Of-The-Art Analysis Of Pesticide Spraying On Infected Plants Using IoE-Equipped UAV's Operational State Solar-Powered UAVs: A systematic Literature Review Application of Digital Documentation in Vernacular Architecture Studies: Case of the Omani French Museum in Mutrah
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1