Optimization of Downlink Power Allocation in NOMA-OTFS Based Cross-Domain Vehicular Networks

Hao Xu, Zhiquan Bai, Jinqiu Zhao, Dejie Ma, Bangwei He, Kyungsup Kwak
{"title":"Optimization of Downlink Power Allocation in NOMA-OTFS Based Cross-Domain Vehicular Networks","authors":"Hao Xu, Zhiquan Bai, Jinqiu Zhao, Dejie Ma, Bangwei He, Kyungsup Kwak","doi":"10.23919/ICACT60172.2024.10471949","DOIUrl":null,"url":null,"abstract":"Orthogonal time frequency space (OTFS) and non-orthogonal multiple access (NOMA) are pivotal for enhancing the transmission performance of vehicular communications. This paper delves into the downlink power allocation of a NOMA-OTFS system with a frequency domain linear equalizer (FD-LE), where a high-speed user in delay-Doppler domain and multiple low-speed time-frequency domain NOMA users coexist. Considering the fairness of NOMA users, we optimize the minimum rate of the low-speed users, constrained by the quality of service (QoS) of the high-speed user. To address this problem, we propose an iterative power allocation optimization (IP-AO) strategy and obtain an accurate optimal solution based on the auxiliary variables by transforming the original non-convex problem into a convex one. Moreover, we derive a closed-form solution for the optimal power allocation (OPA). Simulation results validate the superiority of our schemes over traditional power allocation methods in maximizing the minimum user rate in the NOMA-OTFS vehicular system.","PeriodicalId":518077,"journal":{"name":"2024 26th International Conference on Advanced Communications Technology (ICACT)","volume":"32 2","pages":"01-06"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 26th International Conference on Advanced Communications Technology (ICACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICACT60172.2024.10471949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Orthogonal time frequency space (OTFS) and non-orthogonal multiple access (NOMA) are pivotal for enhancing the transmission performance of vehicular communications. This paper delves into the downlink power allocation of a NOMA-OTFS system with a frequency domain linear equalizer (FD-LE), where a high-speed user in delay-Doppler domain and multiple low-speed time-frequency domain NOMA users coexist. Considering the fairness of NOMA users, we optimize the minimum rate of the low-speed users, constrained by the quality of service (QoS) of the high-speed user. To address this problem, we propose an iterative power allocation optimization (IP-AO) strategy and obtain an accurate optimal solution based on the auxiliary variables by transforming the original non-convex problem into a convex one. Moreover, we derive a closed-form solution for the optimal power allocation (OPA). Simulation results validate the superiority of our schemes over traditional power allocation methods in maximizing the minimum user rate in the NOMA-OTFS vehicular system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 NOMA-OTFS 的跨域车载网络中的下行链路功率分配优化
正交时频空间(OTFS)和非正交多址(NOMA)对提高车载通信的传输性能至关重要。本文深入研究了带有频域线性均衡器(FD-LE)的 NOMA-OTFS 系统的下行链路功率分配,在该系统中,一个延迟多普勒域的高速用户和多个低速时频域 NOMA 用户共存。考虑到 NOMA 用户的公平性,我们优化了低速用户的最低速率,但受制于高速用户的服务质量(QoS)。为解决这一问题,我们提出了迭代功率分配优化(IP-AO)策略,并通过将原始非凸问题转化为凸问题,获得了基于辅助变量的精确最优解。此外,我们还推导出了最优功率分配 (OPA) 的闭式解。仿真结果验证了我们的方案在最大化 NOMA-OTFS 车辆系统的最小用户速率方面优于传统的功率分配方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhancing Inter-Satellite Data Relay in Dynamic Space Communication Deep Learning Based Cervical Spine Bones Detection: A Case Study Using YOLO Deep Reinforcement Learning Based Beamforming in RIS-Assisted MIMO System Under Hardware Loss An Enhanced Topic Modeling Method in Educational Domain by Integrating LDA with Semantic Leveraging Deep Learning for Automated Analysis of Colorectal Cancer Histology Images to Elevate Diagnosis Precision
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1