Time-frequency Analysis for Validating Prognostics Algorithms of Rolling Element Bearings

Guanhua Zhu, Xiaoling Xu, Qing Zhong, Bing-Yuh Lu, Yushen Lu, Guangming Xu, Yumeng Zhou, Ziyi Jiang, Kai Sun, Minhao Wang
{"title":"Time-frequency Analysis for Validating Prognostics Algorithms of Rolling Element Bearings","authors":"Guanhua Zhu, Xiaoling Xu, Qing Zhong, Bing-Yuh Lu, Yushen Lu, Guangming Xu, Yumeng Zhou, Ziyi Jiang, Kai Sun, Minhao Wang","doi":"10.23919/ICACT60172.2024.10471976","DOIUrl":null,"url":null,"abstract":"This study employed the time-frequency analysis to compute some of the XJTU-SY bearing datasets and aimed at the investigation of spectrogram of the raw data of the datasets. The methods of this study are divided into 4 parts: (1) spectrogram, (2) XJTU-SY bearing datasets, (3) equipment and, (4) 2D correlation. The results show the dominant reasons of malfunction of the machine occur in the duration of the 75th to 100th minutes. Both 2D correlation coefficients of the spectrograms of horizontal and vertical vibrations in the 100th and 123th minutes are larger than 0.8 because rotation of the roller entered a distinguished state of malfunction in the 100th minute. The inner damage is enhanced step by step. The interpretation of VEs and HEs is helpful to detect the fault diagnosis of the roller. The further studies will test more data, and add more algorithms for the accurate diagnosis.","PeriodicalId":518077,"journal":{"name":"2024 26th International Conference on Advanced Communications Technology (ICACT)","volume":"17 1","pages":"327-331"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 26th International Conference on Advanced Communications Technology (ICACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICACT60172.2024.10471976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study employed the time-frequency analysis to compute some of the XJTU-SY bearing datasets and aimed at the investigation of spectrogram of the raw data of the datasets. The methods of this study are divided into 4 parts: (1) spectrogram, (2) XJTU-SY bearing datasets, (3) equipment and, (4) 2D correlation. The results show the dominant reasons of malfunction of the machine occur in the duration of the 75th to 100th minutes. Both 2D correlation coefficients of the spectrograms of horizontal and vertical vibrations in the 100th and 123th minutes are larger than 0.8 because rotation of the roller entered a distinguished state of malfunction in the 100th minute. The inner damage is enhanced step by step. The interpretation of VEs and HEs is helpful to detect the fault diagnosis of the roller. The further studies will test more data, and add more algorithms for the accurate diagnosis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于验证滚动体轴承诊断算法的时频分析
本研究采用时频分析法计算了部分 XJTU-SY 轴承数据集,旨在研究数据集原始数据的频谱图。本研究的方法分为四个部分:(1)频谱图;(2)XJTU-SY 轴承数据集;(3)设备;(4)二维相关性。结果表明,机器故障的主要原因发生在第 75 分钟至第 100 分钟。第 100 分钟和第 123 分钟的水平振动和垂直振动频谱图的二维相关系数均大于 0.8,这是因为辊筒旋转在第 100 分钟进入了明显的故障状态。内部损坏逐步加剧。对 VE 和 HE 的解释有助于检测滚筒的故障诊断。进一步的研究将测试更多的数据,并增加更多的算法来进行精确诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhancing Inter-Satellite Data Relay in Dynamic Space Communication Deep Learning Based Cervical Spine Bones Detection: A Case Study Using YOLO Deep Reinforcement Learning Based Beamforming in RIS-Assisted MIMO System Under Hardware Loss An Enhanced Topic Modeling Method in Educational Domain by Integrating LDA with Semantic Leveraging Deep Learning for Automated Analysis of Colorectal Cancer Histology Images to Elevate Diagnosis Precision
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1