Energy-Efficient Off-Road Navigation of an Unmanned Mining Truck on a Rough Terrain

A. Savkin, S. Verma, Siyuan Li
{"title":"Energy-Efficient Off-Road Navigation of an Unmanned Mining Truck on a Rough Terrain","authors":"A. Savkin, S. Verma, Siyuan Li","doi":"10.1109/ANZCC59813.2024.10432796","DOIUrl":null,"url":null,"abstract":"This paper presents a solution to the complex challenge of optimizing the navigation of unmanned mining trucks across challenging terrain. The primary goal is to minimize fuel consumption while ensuring safety by avoiding designated hazard zones. The developed algorithm efficiently calculates an optimal path for the truck by considering both the terrain’s geometric characteristics and safety constraints. Importantly, this research rigorously proves the global optimality of the proposed navigation algorithm. Our work contributes to enhancing the efficiency and safety of autonomous mining operations.","PeriodicalId":518506,"journal":{"name":"2024 Australian & New Zealand Control Conference (ANZCC)","volume":"1217 34","pages":"98-102"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 Australian & New Zealand Control Conference (ANZCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANZCC59813.2024.10432796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a solution to the complex challenge of optimizing the navigation of unmanned mining trucks across challenging terrain. The primary goal is to minimize fuel consumption while ensuring safety by avoiding designated hazard zones. The developed algorithm efficiently calculates an optimal path for the truck by considering both the terrain’s geometric characteristics and safety constraints. Importantly, this research rigorously proves the global optimality of the proposed navigation algorithm. Our work contributes to enhancing the efficiency and safety of autonomous mining operations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无人采矿车在崎岖地形上的节能越野导航
本文针对优化无人采矿卡车在充满挑战的地形中的导航这一复杂难题提出了一种解决方案。主要目标是最大限度地降低油耗,同时避开指定的危险区域,确保安全。所开发的算法通过同时考虑地形的几何特征和安全限制,有效地计算出卡车的最优路径。重要的是,这项研究严格证明了所提导航算法的全局最优性。我们的工作有助于提高自主采矿作业的效率和安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Achieving Interactive Shooting Training: Mathematical Modeling of Gun-launched Missile Ballistic Trajectories in LVC Architecture A Knowledge Distillation Network Combining Adversarial Training and Intermediate Feature Extraction for Lane Line Detection Energy Management in Community Microgrid—A Techno-economic Study Framework Distributed Formation Control with Collision Avoidance and Mismatch Estimation: Algorithm and Experiments Easy Planting with Distributed Cellular Plant Factory*
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1