Signature Forgery and Veracity Detection using Machine Learning

Navneet Tiwari, Jinesh Thakkar, Om Bansode, Hanmant Magar
{"title":"Signature Forgery and Veracity Detection using Machine Learning","authors":"Navneet Tiwari, Jinesh Thakkar, Om Bansode, Hanmant Magar","doi":"10.1109/ICETSIS61505.2024.10459390","DOIUrl":null,"url":null,"abstract":"This research paper addresses the escalating risk of fraud signatures in banking transactions. It introduces a Signature Forgery Detection System that utilizes offline verification and diverse geometric measures to discern genuine from forged signatures. With the prevalence of signature-based identity verification in financial transactions and the absence of foolproof systems, the proposed system aims to enhance the security of banking by efficiently detecting and preventing signature forgery.","PeriodicalId":518932,"journal":{"name":"2024 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICETSIS61505.2024.10459390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This research paper addresses the escalating risk of fraud signatures in banking transactions. It introduces a Signature Forgery Detection System that utilizes offline verification and diverse geometric measures to discern genuine from forged signatures. With the prevalence of signature-based identity verification in financial transactions and the absence of foolproof systems, the proposed system aims to enhance the security of banking by efficiently detecting and preventing signature forgery.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用机器学习检测签名伪造和真实性
本研究论文探讨了银行交易中不断升级的签名欺诈风险。它介绍了一种签名伪造检测系统,该系统利用离线验证和多种几何措施来辨别真假签名。由于在金融交易中普遍使用基于签名的身份验证,且缺乏万无一失的系统,因此所提出的系统旨在通过有效检测和防止签名伪造来提高银行业务的安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Other reviewers Bean Leaf Lesions Image Classification: A Robust Ensemble Deep Learning Approach MTU Analyzing for Data Centers Interconnected Using VxLAN AFAR-YOLO: An Adaptive YOLO Object Detection Framework A Decision Support Framework for Sustainable Waste Disposal Technology Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1