Unsupervised Learning for Land Cover Mapping of Casablanca Using Multispectral Imaging

Hafsa Ouchra, A. Belangour, Allae Erraissi
{"title":"Unsupervised Learning for Land Cover Mapping of Casablanca Using Multispectral Imaging","authors":"Hafsa Ouchra, A. Belangour, Allae Erraissi","doi":"10.1109/ICETSIS61505.2024.10459466","DOIUrl":null,"url":null,"abstract":"Precise and current land use data hold immense significance in facilitating efficient urban planning and appropriate environmental oversight. This paper proposes an approach to the unsupervised classification of Casablanca's land use using the Google Earth Engine (GEE) platform. The study relies on multispectral satellite imagery, in particular data from Landsat satellites, to extract meaningful land use categories without resorting to manual labeling. The operational process includes data collection, pre-processing, unsupervised clustering, and graphical display of results. By applying the k-means and Lvq clustering algorithms, the urban area is split into distinct groups, each representing a specific land use class. The resulting land use map provides valuable data on Casablanca's urban fabric, highlighting wooded areas, agricultural land, built infrastructure, water bodies, and barren land. This automated approach demonstrates GEE's potential as a powerful tool for analyzing land use, enabling informed, data-driven decisions on urban development and environmental monitoring. The methodology outlined can serve as a reference for similar research in other regions, helping to advance remote sensing and geospatial analysis techniques in urban and environmental studies. The effectiveness of these two algorithms is assessed in terms of overall accuracy and kappa coefficient. The k-means algorithm showed moderate accuracy, while the Lvq algorithm showed the least satisfactory results.","PeriodicalId":518932,"journal":{"name":"2024 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICETSIS61505.2024.10459466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Precise and current land use data hold immense significance in facilitating efficient urban planning and appropriate environmental oversight. This paper proposes an approach to the unsupervised classification of Casablanca's land use using the Google Earth Engine (GEE) platform. The study relies on multispectral satellite imagery, in particular data from Landsat satellites, to extract meaningful land use categories without resorting to manual labeling. The operational process includes data collection, pre-processing, unsupervised clustering, and graphical display of results. By applying the k-means and Lvq clustering algorithms, the urban area is split into distinct groups, each representing a specific land use class. The resulting land use map provides valuable data on Casablanca's urban fabric, highlighting wooded areas, agricultural land, built infrastructure, water bodies, and barren land. This automated approach demonstrates GEE's potential as a powerful tool for analyzing land use, enabling informed, data-driven decisions on urban development and environmental monitoring. The methodology outlined can serve as a reference for similar research in other regions, helping to advance remote sensing and geospatial analysis techniques in urban and environmental studies. The effectiveness of these two algorithms is assessed in terms of overall accuracy and kappa coefficient. The k-means algorithm showed moderate accuracy, while the Lvq algorithm showed the least satisfactory results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用多光谱成像对卡萨布兰卡土地覆盖绘图进行无监督学习
精确的最新土地利用数据对于促进高效的城市规划和适当的环境监督具有重要意义。本文提出了一种利用谷歌地球引擎(GEE)平台对卡萨布兰卡的土地利用进行无监督分类的方法。该研究依靠多光谱卫星图像,特别是 Landsat 卫星的数据,提取有意义的土地利用类别,而无需借助人工标注。操作过程包括数据收集、预处理、无监督聚类和结果图形显示。通过应用 k-means 和 Lvq 聚类算法,城市区域被分成不同的组,每个组代表一个特定的土地利用类别。由此绘制的土地利用地图为卡萨布兰卡的城市结构提供了宝贵的数据,突出显示了林区、农田、已建基础设施、水体和荒地。这种自动化方法展示了 GEE 作为分析土地利用的强大工具的潜力,使人们能够在城市发展和环境监测方面做出明智的、以数据为导向的决策。所概述的方法可作为其他地区类似研究的参考,有助于在城市和环境研究中推进遥感和地理空间分析技术。从总体准确性和卡帕系数的角度评估了这两种算法的有效性。k-means 算法显示出中等精度,而 Lvq 算法显示出最不令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Other reviewers Bean Leaf Lesions Image Classification: A Robust Ensemble Deep Learning Approach MTU Analyzing for Data Centers Interconnected Using VxLAN AFAR-YOLO: An Adaptive YOLO Object Detection Framework A Decision Support Framework for Sustainable Waste Disposal Technology Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1