An Automated Model of Software Requirement Engineering Using GPT-3.5

Jie Sh'ng Yeow, Muhammad Ehsan Rana, Nur Amira Abdul Majid
{"title":"An Automated Model of Software Requirement Engineering Using GPT-3.5","authors":"Jie Sh'ng Yeow, Muhammad Ehsan Rana, Nur Amira Abdul Majid","doi":"10.1109/ICETSIS61505.2024.10459458","DOIUrl":null,"url":null,"abstract":"While the potential of AI in software development is undeniable, integrating advanced models like GPT-3.5 into its core processes like requirements engineering remains largely unexplored. This research investigates the effectiveness of GPT-3.5 in automating key tasks within software requirements engineering. The primary objective is to comprehensively explore the capabilities, limitations, and potential applications of GPT-3.5 in software requirements engineering. Subsequently, the research undergoes thorough analysis and evaluation to gather insights into the strengths and limitations of GPT-3.5 in the requirement-gathering process. The research concludes by identifying the limitations and putting forth recommendations for future research endeavours aimed at integrating GPT-3.5 into software requirement engineering processes. While GPT-3.5 demonstrates proficiency in aspects like creative prototyping and question generation, limitations in areas like domain understanding and context awareness become evident. By outlining these limitations, the authors offer concrete recommendations for future research focusing on the seamless integration of GPT-3.5 and similar models into the broader framework of software requirements engineering.","PeriodicalId":518932,"journal":{"name":"2024 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS)","volume":"50 6","pages":"1746-1755"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICETSIS61505.2024.10459458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

While the potential of AI in software development is undeniable, integrating advanced models like GPT-3.5 into its core processes like requirements engineering remains largely unexplored. This research investigates the effectiveness of GPT-3.5 in automating key tasks within software requirements engineering. The primary objective is to comprehensively explore the capabilities, limitations, and potential applications of GPT-3.5 in software requirements engineering. Subsequently, the research undergoes thorough analysis and evaluation to gather insights into the strengths and limitations of GPT-3.5 in the requirement-gathering process. The research concludes by identifying the limitations and putting forth recommendations for future research endeavours aimed at integrating GPT-3.5 into software requirement engineering processes. While GPT-3.5 demonstrates proficiency in aspects like creative prototyping and question generation, limitations in areas like domain understanding and context awareness become evident. By outlining these limitations, the authors offer concrete recommendations for future research focusing on the seamless integration of GPT-3.5 and similar models into the broader framework of software requirements engineering.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用 GPT-3.5 的软件需求工程自动化模型
虽然人工智能在软件开发中的潜力毋庸置疑,但将 GPT-3.5 等先进模型集成到需求工程等核心流程中,在很大程度上仍有待探索。本研究调查了 GPT-3.5 在自动化软件需求工程关键任务中的有效性。主要目标是全面探索 GPT-3.5 在软件需求工程中的功能、局限性和潜在应用。随后,研究将进行全面分析和评估,以深入了解 GPT-3.5 在需求收集过程中的优势和局限性。研究最后指出了局限性,并为今后将 GPT-3.5 整合到软件需求工程流程中的研究工作提出了建议。虽然 GPT-3.5 在创造性原型设计和问题生成等方面表现出色,但在领域理解和上下文感知等方面的局限性也很明显。通过概述这些局限性,作者为今后的研究提出了具体建议,重点是将 GPT-3.5 和类似模型无缝集成到更广泛的软件需求工程框架中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Other reviewers Bean Leaf Lesions Image Classification: A Robust Ensemble Deep Learning Approach MTU Analyzing for Data Centers Interconnected Using VxLAN AFAR-YOLO: An Adaptive YOLO Object Detection Framework A Decision Support Framework for Sustainable Waste Disposal Technology Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1