Klasifikasi Buah dan Sayuran Segar atau Busuk Menggunakan Convolutional Neural Network

Eka Aenun Nisa Munfaati, Arita Witanti
{"title":"Klasifikasi Buah dan Sayuran Segar atau Busuk Menggunakan Convolutional Neural Network","authors":"Eka Aenun Nisa Munfaati, Arita Witanti","doi":"10.14421/jiska.2024.9.1.27-38","DOIUrl":null,"url":null,"abstract":"Fresh fruits and vegetables contain many nutrients, such as minerals, vitamins, antioxidants, and beneficial fiber, superior to those found in rotten or almost rotten produce. On the other hand, fruits and vegetables that are nearly spoiled or already rotten have significantly lost their nutritional value. Rotten produce also harbors bacteria and fungi that can lead to infections and food poisoning when consumed. Convolutional Neural Network (CNN) offers a programmable solution for classifying fresh and rotten fruits and vegetables. Image processing using the TensorFlow library is employed in this classification process. During testing on the training data, the CNN achieved an accuracy of 90.42%. In comparison, the validation accuracy reached 94.21% when using the SGD optimizer, 20 epochs, a batch size 16, and a learning rate of 0.01. For the testing data, the accuracy obtained was 80.83%.","PeriodicalId":518302,"journal":{"name":"JISKA (Jurnal Informatika Sunan Kalijaga)","volume":"97 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JISKA (Jurnal Informatika Sunan Kalijaga)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14421/jiska.2024.9.1.27-38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Fresh fruits and vegetables contain many nutrients, such as minerals, vitamins, antioxidants, and beneficial fiber, superior to those found in rotten or almost rotten produce. On the other hand, fruits and vegetables that are nearly spoiled or already rotten have significantly lost their nutritional value. Rotten produce also harbors bacteria and fungi that can lead to infections and food poisoning when consumed. Convolutional Neural Network (CNN) offers a programmable solution for classifying fresh and rotten fruits and vegetables. Image processing using the TensorFlow library is employed in this classification process. During testing on the training data, the CNN achieved an accuracy of 90.42%. In comparison, the validation accuracy reached 94.21% when using the SGD optimizer, 20 epochs, a batch size 16, and a learning rate of 0.01. For the testing data, the accuracy obtained was 80.83%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用卷积神经网络对新鲜或腐烂水果和蔬菜进行分类
新鲜水果和蔬菜含有多种营养成分,如矿物质、维生素、抗氧化剂和有益纤维,这些营养成分优于腐烂或几乎腐烂的农产品。另一方面,几乎变质或已经腐烂的水果和蔬菜的营养价值已大大降低。腐烂的农产品还会滋生细菌和真菌,食用后会导致感染和食物中毒。卷积神经网络(CNN)为新鲜和腐烂水果和蔬菜的分类提供了一种可编程的解决方案。在分类过程中,使用 TensorFlow 库进行图像处理。在对训练数据进行测试期间,CNN 的准确率达到了 90.42%。相比之下,在使用 SGD 优化器、20 个历元、批量大小为 16 和学习率为 0.01 时,验证准确率达到了 94.21%。测试数据的准确率为 80.83%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improving Stock Price Prediction Accuracy with StacBi LSTM Klasifikasi Buah dan Sayuran Segar atau Busuk Menggunakan Convolutional Neural Network Prediksi Deteksi Penyakit Kanker Payudara dengan Menggunakan Algoritma Decision Tree Implementasi Load Balancing dengan HAProxy di Sistem Informasi Akademik UIN Sunan Kalijaga
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1