Maximum Likelihood Estimation with the Two-Parameter Exponential Model and Interval-Censored Data

Michael Z. Spivey
{"title":"Maximum Likelihood Estimation with the Two-Parameter Exponential Model and Interval-Censored Data","authors":"Michael Z. Spivey","doi":"10.1109/RAMS51492.2024.10457672","DOIUrl":null,"url":null,"abstract":"With exact lifetime data using maximum likelihood to estimate the scale and threshold parameters for a two-parameter exponential model is quite simple. However, in the presence of interval-censored data these calculations become much more difficult, especially when the censoring is random. In this paper we discuss the mathematics underlying the determination of the maximum likelihood estimators for both the scale and threshold parameters for the two-parameter exponential model in the presence of random interval-censored data. In addition, we prove a few theoretical results concerning the maximum likelihood estimators, results that greatly restrict the situations under which the log-likelihood function could have more than one local maximum. Finally, we present results concerning the speed and accuracy of two different methods for determining these maximum likelihood estimators numerically.","PeriodicalId":518362,"journal":{"name":"2024 Annual Reliability and Maintainability Symposium (RAMS)","volume":"63 7","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 Annual Reliability and Maintainability Symposium (RAMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAMS51492.2024.10457672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With exact lifetime data using maximum likelihood to estimate the scale and threshold parameters for a two-parameter exponential model is quite simple. However, in the presence of interval-censored data these calculations become much more difficult, especially when the censoring is random. In this paper we discuss the mathematics underlying the determination of the maximum likelihood estimators for both the scale and threshold parameters for the two-parameter exponential model in the presence of random interval-censored data. In addition, we prove a few theoretical results concerning the maximum likelihood estimators, results that greatly restrict the situations under which the log-likelihood function could have more than one local maximum. Finally, we present results concerning the speed and accuracy of two different methods for determining these maximum likelihood estimators numerically.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用双参数指数模型和区间删失数据进行最大似然估计
对于精确寿命数据,使用最大似然法估计双参数指数模型的规模参数和阈值参数非常简单。然而,在有区间删失数据的情况下,这些计算就变得困难得多,尤其是当删失是随机的时候。在本文中,我们将讨论在随机区间删失数据存在的情况下,确定双参数指数模型的标度参数和阈值参数的最大似然估计值的基本数学原理。此外,我们还证明了有关最大似然估计值的一些理论结果,这些结果极大地限制了对数似然函数可能具有一个以上局部最大值的情况。最后,我们介绍了两种不同方法在数值上确定这些最大似然估计值的速度和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Do Bayesian Neural Networks Weapon System Improve Predictive Maintenance? Measures and Metrics of ML Data and Models to Assure Reliable and Safe Systems Estimating Multi-Phase Life Cycle Reliability by Combining Failure Rate Adjustments into Duty Cycle An Automated Performance Evaluation of the Newborn Life Support Procedure Maximum Likelihood Estimation with the Two-Parameter Exponential Model and Interval-Censored Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1