{"title":"A High Performance Detailed Router Based on Integer Programming with Adaptive Route Guides","authors":"Zhongdong Qi, Shizhe Hu, Qi Peng, Hailong You, Chao Han, Zhangming Zhu","doi":"10.1109/ASP-DAC58780.2024.10473934","DOIUrl":null,"url":null,"abstract":"Detailed routing is a crucial and time-consuming stage for ASIC design. As the number and complexity of design rules increase, it is challenging to achieve high solution quality and fast speed at the same time in detailed routing. In this work, a high performance detailed routing algorithm named IPAG with integer programming (IP) is proposed. The IP formulation uses the selection of candidate routes as decision variables. High quality candidate routes are generated by queue-based rip-up and reroute with adaptive global route guidance. A design rule checking engine which can simultaneously process nets with multiple routes is designed, to efficiently construct penalty parameters in the IP formulation. Experimental results on ISPD 2018 detailed routing benchmark show that IPAG achieves better solution quality in shorter or comparable runtime, as compared to the state-of-the-art academic detailed router.","PeriodicalId":518586,"journal":{"name":"2024 29th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"58 9-10","pages":"975-980"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 29th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASP-DAC58780.2024.10473934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Detailed routing is a crucial and time-consuming stage for ASIC design. As the number and complexity of design rules increase, it is challenging to achieve high solution quality and fast speed at the same time in detailed routing. In this work, a high performance detailed routing algorithm named IPAG with integer programming (IP) is proposed. The IP formulation uses the selection of candidate routes as decision variables. High quality candidate routes are generated by queue-based rip-up and reroute with adaptive global route guidance. A design rule checking engine which can simultaneously process nets with multiple routes is designed, to efficiently construct penalty parameters in the IP formulation. Experimental results on ISPD 2018 detailed routing benchmark show that IPAG achieves better solution quality in shorter or comparable runtime, as compared to the state-of-the-art academic detailed router.