Collaborative Coalescing of Redundant Memory Access for GPU System

Fan Jiang, Chengeng Li, Wei Zhang, Jiang Xu
{"title":"Collaborative Coalescing of Redundant Memory Access for GPU System","authors":"Fan Jiang, Chengeng Li, Wei Zhang, Jiang Xu","doi":"10.1109/ASP-DAC58780.2024.10473837","DOIUrl":null,"url":null,"abstract":"GPU-based computing serves as the primary solution driving the performance of HPC systems. However, modern GPU systems encounter performance bottlenecks resulting from heavy memory access traffic and insufficient NoC bandwidth. In this work, we propose a collaborative coalescing mechanism aimed at eliminating redundant memory access and boosting GPU system performance. To achieve this, we design a coalescing unit for each memory partition, effectively merging requests from both inter-cluster and intra-cluster SMs. Additionally, we introduce a hierarchical multicast module to replicate and distribute the coalesced reply messages to multiple destination SMs. Experimental results show that our method achieves 20.6% improvement on performance and 27.1% reduction on NoC traffic over the baseline.","PeriodicalId":518586,"journal":{"name":"2024 29th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"99 1","pages":"195-200"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 29th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASP-DAC58780.2024.10473837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

GPU-based computing serves as the primary solution driving the performance of HPC systems. However, modern GPU systems encounter performance bottlenecks resulting from heavy memory access traffic and insufficient NoC bandwidth. In this work, we propose a collaborative coalescing mechanism aimed at eliminating redundant memory access and boosting GPU system performance. To achieve this, we design a coalescing unit for each memory partition, effectively merging requests from both inter-cluster and intra-cluster SMs. Additionally, we introduce a hierarchical multicast module to replicate and distribute the coalesced reply messages to multiple destination SMs. Experimental results show that our method achieves 20.6% improvement on performance and 27.1% reduction on NoC traffic over the baseline.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
为 GPU 系统协同聚合冗余内存访问
基于 GPU 的计算是提高高性能计算系统性能的主要解决方案。然而,由于内存访问流量大和 NoC 带宽不足,现代 GPU 系统遇到了性能瓶颈。在这项工作中,我们提出了一种协作凝聚机制,旨在消除冗余内存访问并提高 GPU 系统性能。为此,我们为每个内存分区设计了一个聚合单元,有效地合并了来自集群间和集群内 SM 的请求。此外,我们还引入了一个分层组播模块,用于将合并后的回复信息复制并分发到多个目标 SM。实验结果表明,与基线相比,我们的方法提高了 20.6% 的性能,减少了 27.1% 的 NoC 流量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SPIRAL: Signal-Power Integrity Co-Analysis for High-Speed Inter-Chiplet Serial Links Validation A Resource-efficient Task Scheduling System using Reinforcement Learning : Invited Paper Toward End-to-End Analog Design Automation with ML and Data-Driven Approaches (Invited Paper) A Cross-layer Framework for Design Space and Variation Analysis of Non-Volatile Ferroelectric Capacitor-Based Compute-in-Memory Accelerators A High Performance Detailed Router Based on Integer Programming with Adaptive Route Guides
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1