Revolutionizing Fault Prediction in MetroPT Datasets: Enhanced Diagnosis and Efficient Failure Prediction through Innovative Data Refinement

Osamah N. Neamah, R. Bayir
{"title":"Revolutionizing Fault Prediction in MetroPT Datasets: Enhanced Diagnosis and Efficient Failure Prediction through Innovative Data Refinement","authors":"Osamah N. Neamah, R. Bayir","doi":"10.1109/ICPC2T60072.2024.10475088","DOIUrl":null,"url":null,"abstract":"This scientific paper presents groundbreaking advancements in Predictive Maintenance (PdM) within Industry 4.0, employing cutting-edge machine learning classification algorithms for fault prediction and diagnosis in Air Production Unit (APU) systems like MetroPT and MetroPT -3. This research uses data-driven methodologies to optimize feature extraction techniques to enhance fault prediction and improve diagnostic accuracy. A robust and versatile model emerges through comprehensive testing, displaying exceptional potential in fault prediction and diagnosis for complex systems. The paper highlights the significance of enhanced analytical techniques, such as cross-validation, ensuring the reliability and robustness of the model, contributing to refined and accurate fault prediction and diagnosis, all without succumbing to overfitting. This work significantly advances the application of machine learning in predicting malignancy within Industry 4.0, showcasing the promise of these methodologies in fault prediction and diagnosis for intricate systems.","PeriodicalId":518382,"journal":{"name":"2024 Third International Conference on Power, Control and Computing Technologies (ICPC2T)","volume":"192 1","pages":"310-315"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 Third International Conference on Power, Control and Computing Technologies (ICPC2T)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPC2T60072.2024.10475088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This scientific paper presents groundbreaking advancements in Predictive Maintenance (PdM) within Industry 4.0, employing cutting-edge machine learning classification algorithms for fault prediction and diagnosis in Air Production Unit (APU) systems like MetroPT and MetroPT -3. This research uses data-driven methodologies to optimize feature extraction techniques to enhance fault prediction and improve diagnostic accuracy. A robust and versatile model emerges through comprehensive testing, displaying exceptional potential in fault prediction and diagnosis for complex systems. The paper highlights the significance of enhanced analytical techniques, such as cross-validation, ensuring the reliability and robustness of the model, contributing to refined and accurate fault prediction and diagnosis, all without succumbing to overfitting. This work significantly advances the application of machine learning in predicting malignancy within Industry 4.0, showcasing the promise of these methodologies in fault prediction and diagnosis for intricate systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
革新 MetroPT 数据集中的故障预测:通过创新数据提炼增强诊断和高效故障预测能力
本科学论文介绍了工业 4.0 中预测性维护(PdM)的突破性进展,采用了尖端的机器学习分类算法,用于 MetroPT 和 MetroPT -3 等空气生产单元(APU)系统的故障预测和诊断。 该研究采用数据驱动方法优化特征提取技术,以加强故障预测和提高诊断准确性。通过综合测试,建立了一个稳健、多用途的模型,在复杂系统的故障预测和诊断方面显示出非凡的潜力。论文强调了交叉验证等增强型分析技术的重要意义,这些技术确保了模型的可靠性和稳健性,有助于实现精细、准确的故障预测和诊断,同时不会出现过度拟合的情况。这项工作极大地推动了机器学习在工业 4.0 恶性肿瘤预测中的应用,展示了这些方法在复杂系统故障预测和诊断中的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Real-time Solar Power Optimization and Energy Monitoring System with Maximum Power Point Tracking V2V Charging and Solar Integration to Overcome Range Anxiety in Electric Vehicles Voltage Stability Enhancement for EV Stations: An Optimal Mechanism Utilizing a Smart Solar Inverter Revolutionizing Fault Prediction in MetroPT Datasets: Enhanced Diagnosis and Efficient Failure Prediction through Innovative Data Refinement A New Common Ground Single-Phase Transformerless Five-Level Inverter for Photovoltaic Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1