Automated synthesis of mixed-signal ML inference hardware under accuracy constraints

K. Kunal, Jitesh Poojary, S. Ramprasath, Ramesh Harjani, S. Sapatnekar
{"title":"Automated synthesis of mixed-signal ML inference hardware under accuracy constraints","authors":"K. Kunal, Jitesh Poojary, S. Ramprasath, Ramesh Harjani, S. Sapatnekar","doi":"10.1109/ASP-DAC58780.2024.10473942","DOIUrl":null,"url":null,"abstract":"Due to the inherent error-tolerance of machine learning (ML) algorithms, many parts of the inference computation can be performed with adequate accuracy and low power under relatively low precision. Early approaches have used digital approximate computing methods to explore this space. Recent approaches using analog-based operations achieve power-efficient computation at moderate precision. This work proposes a mixed-signal optimization (MiSO) approach that optimally blends analog and digital computation for ML inference. Based on accuracy and power models, an integer linear programming formulation is used to optimize design metrics of analog/digital implementations. The efficacy of the method is demonstrated on multiple ML architectures.","PeriodicalId":518586,"journal":{"name":"2024 29th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"186 1","pages":"478-483"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 29th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASP-DAC58780.2024.10473942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the inherent error-tolerance of machine learning (ML) algorithms, many parts of the inference computation can be performed with adequate accuracy and low power under relatively low precision. Early approaches have used digital approximate computing methods to explore this space. Recent approaches using analog-based operations achieve power-efficient computation at moderate precision. This work proposes a mixed-signal optimization (MiSO) approach that optimally blends analog and digital computation for ML inference. Based on accuracy and power models, an integer linear programming formulation is used to optimize design metrics of analog/digital implementations. The efficacy of the method is demonstrated on multiple ML architectures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
精度限制下混合信号 ML 推理硬件的自动合成
由于机器学习(ML)算法固有的容错性,推理计算的许多部分都可以在相对较低的精度下以足够的精度和较低的功耗执行。早期的方法使用数字近似计算方法来探索这一空间。最近的方法使用基于模拟的运算,在中等精度下实现了高能效计算。本研究提出了一种混合信号优化(MiSO)方法,可将模拟计算和数字计算最佳地融合到 ML 推断中。在精度和功耗模型的基础上,使用整数线性规划公式来优化模拟/数字实现的设计指标。该方法在多种 ML 架构上的功效得到了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SPIRAL: Signal-Power Integrity Co-Analysis for High-Speed Inter-Chiplet Serial Links Validation A Resource-efficient Task Scheduling System using Reinforcement Learning : Invited Paper Toward End-to-End Analog Design Automation with ML and Data-Driven Approaches (Invited Paper) A Cross-layer Framework for Design Space and Variation Analysis of Non-Volatile Ferroelectric Capacitor-Based Compute-in-Memory Accelerators A High Performance Detailed Router Based on Integer Programming with Adaptive Route Guides
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1