Performance of Single-Stage and Dual-Stage EV Battery Chargers for G2V and V2G Operation

Akash Ganne, L. Sahu
{"title":"Performance of Single-Stage and Dual-Stage EV Battery Chargers for G2V and V2G Operation","authors":"Akash Ganne, L. Sahu","doi":"10.1109/ICPC2T60072.2024.10474651","DOIUrl":null,"url":null,"abstract":"In recent years the growth of electric vehicles has increased day by day and this encourages the different G2V, V2G, V2V, V2L, and V2H technologies. In this paper, discussed the bidirectional power flow from the grid to the vehicle or vice versa. V2G technology is very beneficial during peak load periods, voltage regulation, and improvement of power system stability. To implement this V2G technology, it required proper management of the electric battery charger and the charger is capable of flowing the power in either direction. This paper shows the single-stage and dual-stage charger topology to flow the power in either direction i.e. G2V or V2G. This paper also shows the battery can be charged using constant current and constant voltage charging methods. In the single stage, use only the PFC circuit to charge or discharge the battery. In the dual-stage, an active bridge rectifier for AC to DC conversion with an L filter in series with the source has been used and for the next stage, a bidirectional DAB converter with an LC filter for DC to DC conversion is used and a separate control strategy for battery charging & discharging. This paper shows the battery control strategy can charge or discharge the battery at constant current and constant voltage. The performance of this single-stage and dual-stage battery charger is verified by simulations in MATLAB/SIMULINK software and the waveform is verified in real-time using the OPAL-RT system.","PeriodicalId":518382,"journal":{"name":"2024 Third International Conference on Power, Control and Computing Technologies (ICPC2T)","volume":"2 2","pages":"486-491"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 Third International Conference on Power, Control and Computing Technologies (ICPC2T)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPC2T60072.2024.10474651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years the growth of electric vehicles has increased day by day and this encourages the different G2V, V2G, V2V, V2L, and V2H technologies. In this paper, discussed the bidirectional power flow from the grid to the vehicle or vice versa. V2G technology is very beneficial during peak load periods, voltage regulation, and improvement of power system stability. To implement this V2G technology, it required proper management of the electric battery charger and the charger is capable of flowing the power in either direction. This paper shows the single-stage and dual-stage charger topology to flow the power in either direction i.e. G2V or V2G. This paper also shows the battery can be charged using constant current and constant voltage charging methods. In the single stage, use only the PFC circuit to charge or discharge the battery. In the dual-stage, an active bridge rectifier for AC to DC conversion with an L filter in series with the source has been used and for the next stage, a bidirectional DAB converter with an LC filter for DC to DC conversion is used and a separate control strategy for battery charging & discharging. This paper shows the battery control strategy can charge or discharge the battery at constant current and constant voltage. The performance of this single-stage and dual-stage battery charger is verified by simulations in MATLAB/SIMULINK software and the waveform is verified in real-time using the OPAL-RT system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于 G2V 和 V2G 运行的单级和双级电动汽车电池充电器的性能
近年来,电动汽车的数量与日俱增,这促进了不同的 G2V、V2G、V2V、V2L 和 V2H 技术的发展。本文讨论了从电网到车辆的双向电力流,反之亦然。V2G 技术在高峰负荷期、电压调节和改善电力系统稳定性方面非常有益。要实现这种 V2G 技术,需要对电动电池充电器进行适当管理,并且充电器能够双向供电。本文介绍了单级和双级充电器拓扑结构,以实现电力的双向流动,即 G2V 或 V2G。本文还说明了可以使用恒流和恒压充电方法为电池充电。在单级充电器中,仅使用 PFC 电路对电池充电或放电。在双阶段中,使用一个有源桥式整流器进行交流到直流的转换,并在源端串联一个 L 型滤波器;在下一阶段中,使用一个双向 DAB 转换器和一个 LC 型滤波器进行直流到直流的转换,并采用单独的控制策略为电池充电和放电。本文显示,电池控制策略能以恒定电流和恒定电压为电池充电或放电。该单级和双级电池充电器的性能在 MATLAB/SIMULINK 软件中进行了仿真验证,并使用 OPAL-RT 系统对波形进行了实时验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Real-time Solar Power Optimization and Energy Monitoring System with Maximum Power Point Tracking V2V Charging and Solar Integration to Overcome Range Anxiety in Electric Vehicles Voltage Stability Enhancement for EV Stations: An Optimal Mechanism Utilizing a Smart Solar Inverter Revolutionizing Fault Prediction in MetroPT Datasets: Enhanced Diagnosis and Efficient Failure Prediction through Innovative Data Refinement A New Common Ground Single-Phase Transformerless Five-Level Inverter for Photovoltaic Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1