The Smallest-Footprint Multi-Cells Microfluidics Separation Channel Modeling Via Integration of Lift and Dielectrophoretic (DEP) Forces

Mohammad H. Alhibshi, N. Sobahi
{"title":"The Smallest-Footprint Multi-Cells Microfluidics Separation Channel Modeling Via Integration of Lift and Dielectrophoretic (DEP) Forces","authors":"Mohammad H. Alhibshi, N. Sobahi","doi":"10.1109/MEMS58180.2024.10439479","DOIUrl":null,"url":null,"abstract":"Active and passive separation based microfluidic systems play a significant role in isolating desire cells among others. Various microfluidic systems have been developed and utilized in biomedical cell separation, requiring effective systems with high throughput that have efficient capabilities to isolate different cells and particles effectively and simultaneously. This paper demonstrates the smallest curvature microfluidic channel that separates different blood particles: red and white blood cells, platelets, antigen-presenting cells, and circulating tumor cells at minimum footprint and power consumption. The proposed work utilizes and integrates passive lift and active dielectrophoretic forces using three different electrode shapes that achieves a successful separation of different blood cells to five different outlets.","PeriodicalId":518439,"journal":{"name":"2024 IEEE 37th International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"33 1","pages":"1186-1189"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 IEEE 37th International Conference on Micro Electro Mechanical Systems (MEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMS58180.2024.10439479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Active and passive separation based microfluidic systems play a significant role in isolating desire cells among others. Various microfluidic systems have been developed and utilized in biomedical cell separation, requiring effective systems with high throughput that have efficient capabilities to isolate different cells and particles effectively and simultaneously. This paper demonstrates the smallest curvature microfluidic channel that separates different blood particles: red and white blood cells, platelets, antigen-presenting cells, and circulating tumor cells at minimum footprint and power consumption. The proposed work utilizes and integrates passive lift and active dielectrophoretic forces using three different electrode shapes that achieves a successful separation of different blood cells to five different outlets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过整合提升力和介质泳移(DEP)力实现最小脚印多细胞微流体分离通道建模
基于主动和被动分离的微流控系统在分离欲望细胞等方面发挥着重要作用。各种微流控系统已被开发并应用于生物医学细胞分离领域,这就要求系统具有高通量、高效率的特点,能够同时有效地分离不同的细胞和颗粒。本文展示了最小曲率的微流控通道,它能以最小的占地面积和功耗分离不同的血液颗粒:红细胞、白细胞、血小板、抗原递呈细胞和循环肿瘤细胞。所提出的工作利用三种不同形状的电极,将被动升力和主动介电泳力整合在一起,成功地将不同的血细胞分离到五个不同的出口。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced Photodetection Capabilities of Smaller Size 2D Au/PtSi/P-Si Nanohole Array-Based MIR Schottky Detector Stretchable Fractal Electrodes Integrated on Miniature Semi-Expanded Microballoon Catheter for Directional Nerve Stimulation Mixing, Trapping, and Ejection of Single Microparticle with Size and Material Selectivity Using Acoustic Tweezers Polymethyl Methacrylate (PMMA) Pyrolysis Assisted Transfer of 2D Materials for Large-Scale Molybdenum Disulfide Nems Resonator Arrays DC Hot Switching Lifetime Study for Contact MEMS Switch by Weibull Distribution Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1