Reliability Assessment of an Ultrathin Dielectric Transduced Micromechanical Resonator

Satish K Verma, Pawan Kumar, Bhaskar Mitra
{"title":"Reliability Assessment of an Ultrathin Dielectric Transduced Micromechanical Resonator","authors":"Satish K Verma, Pawan Kumar, Bhaskar Mitra","doi":"10.1109/MEMS58180.2024.10439342","DOIUrl":null,"url":null,"abstract":"This paper presents breakdown and reliability study in an ultrathin dielectric transduced micromechanical device. A metal-insulator-metal (100nm:12.7nm:400nm) ring shaped structure is fabricated. The device geometry can be used as a flexural resonator as well as a switch or an actuator. The fabricated device has a mode frequency of 15.85MHz and quality factor of 4054 in air, and a deflection of 171nm at 3.3V dc bias without experiencing pull-in. The device has a stability for 10594sec at a continuous 5V dc bias, followed by degradation and eventual breakdown at 16646sec. Experimental results show that the device endured over 26,600sec before breaking down for continuous bipolar bias of +/-5V pulse voltage with a frequency of 2Hz, serving as a performance benchmark.","PeriodicalId":518439,"journal":{"name":"2024 IEEE 37th International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"49 3","pages":"1106-1109"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 IEEE 37th International Conference on Micro Electro Mechanical Systems (MEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMS58180.2024.10439342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents breakdown and reliability study in an ultrathin dielectric transduced micromechanical device. A metal-insulator-metal (100nm:12.7nm:400nm) ring shaped structure is fabricated. The device geometry can be used as a flexural resonator as well as a switch or an actuator. The fabricated device has a mode frequency of 15.85MHz and quality factor of 4054 in air, and a deflection of 171nm at 3.3V dc bias without experiencing pull-in. The device has a stability for 10594sec at a continuous 5V dc bias, followed by degradation and eventual breakdown at 16646sec. Experimental results show that the device endured over 26,600sec before breaking down for continuous bipolar bias of +/-5V pulse voltage with a frequency of 2Hz, serving as a performance benchmark.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超薄介质传导微机械谐振器的可靠性评估
本文介绍了超薄介质传导微机械装置的击穿和可靠性研究。本文制作了一个金属-绝缘体-金属(100nm:12.7nm:400nm)环形结构。该器件的几何形状既可用作挠性谐振器,也可用作开关或致动器。所制作的器件在空气中的模式频率为 15.85MHz,品质因数为 4054,在 3.3V 直流偏压下偏转 171nm,不会出现拉入现象。在连续 5V 直流偏压下,该器件在 10594 秒内保持稳定,16646 秒后出现衰减并最终击穿。实验结果表明,在+/-5V 脉冲电压、频率为 2Hz 的连续双极偏压条件下,作为性能基准,该器件承受了超过 26,600 秒的时间才发生击穿。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced Photodetection Capabilities of Smaller Size 2D Au/PtSi/P-Si Nanohole Array-Based MIR Schottky Detector Stretchable Fractal Electrodes Integrated on Miniature Semi-Expanded Microballoon Catheter for Directional Nerve Stimulation Mixing, Trapping, and Ejection of Single Microparticle with Size and Material Selectivity Using Acoustic Tweezers Polymethyl Methacrylate (PMMA) Pyrolysis Assisted Transfer of 2D Materials for Large-Scale Molybdenum Disulfide Nems Resonator Arrays DC Hot Switching Lifetime Study for Contact MEMS Switch by Weibull Distribution Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1