A Prognostic Framework for Post-Operative Patient Survival Prediction in IoMT

Shubhanshi Mittal, Saifur Rahman, Shantanu Pal, Chandan K. Karmakar
{"title":"A Prognostic Framework for Post-Operative Patient Survival Prediction in IoMT","authors":"Shubhanshi Mittal, Saifur Rahman, Shantanu Pal, Chandan K. Karmakar","doi":"10.1109/COMSNETS59351.2024.10426969","DOIUrl":null,"url":null,"abstract":"The study presents an Internet of Medical Things (IoMT) framework designed to predict patient survival outcomes through the evaluation of a post-thoracic surgery scenario. We employ a multi-layered IoMT framework that integrates various sensors and medical devices for real-time data collection, efficient data transmission, and data analysis. Utilizing a set of eight traditional and ensemble machine learning classifiers, along with neural networks optimized using grid search, we establish a baseline performance for the framework's capability in predicting post-surgical survival rates. However, as individual machine learning classifiers exhibit suboptimal performance across the performance metrics used, we combine the individual strengths of these classifiers to construct a stacking approach. The stacked classifier which incorporates a multi-layer perceptron as the final estimator achieved significant results, including a high accuracy of 0.90, precision of 0.87, and recall of 0.93. These metrics not only indicate a high post-operative survival detection rate but also demonstrate a balance of low bias and high variance performance, ensuring that the model is both accurate and reliable in varying IoMT scenarios.","PeriodicalId":518748,"journal":{"name":"2024 16th International Conference on COMmunication Systems & NETworkS (COMSNETS)","volume":"44 2","pages":"415-417"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 16th International Conference on COMmunication Systems & NETworkS (COMSNETS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMSNETS59351.2024.10426969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The study presents an Internet of Medical Things (IoMT) framework designed to predict patient survival outcomes through the evaluation of a post-thoracic surgery scenario. We employ a multi-layered IoMT framework that integrates various sensors and medical devices for real-time data collection, efficient data transmission, and data analysis. Utilizing a set of eight traditional and ensemble machine learning classifiers, along with neural networks optimized using grid search, we establish a baseline performance for the framework's capability in predicting post-surgical survival rates. However, as individual machine learning classifiers exhibit suboptimal performance across the performance metrics used, we combine the individual strengths of these classifiers to construct a stacking approach. The stacked classifier which incorporates a multi-layer perceptron as the final estimator achieved significant results, including a high accuracy of 0.90, precision of 0.87, and recall of 0.93. These metrics not only indicate a high post-operative survival detection rate but also demonstrate a balance of low bias and high variance performance, ensuring that the model is both accurate and reliable in varying IoMT scenarios.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于预测 IoMT 术后患者存活率的预后框架
本研究提出了一个医疗物联网(IoMT)框架,旨在通过评估胸外科手术后的情况来预测患者的生存结果。我们采用了一个多层 IoMT 框架,该框架集成了各种传感器和医疗设备,用于实时数据收集、高效数据传输和数据分析。利用一组八个传统和集合机器学习分类器,以及使用网格搜索优化的神经网络,我们为该框架预测手术后存活率的能力建立了基准性能。然而,由于单个机器学习分类器在所使用的性能指标方面表现不佳,我们将这些分类器的各自优势结合起来,构建了一种堆叠方法。将多层感知器作为最终估计器的堆叠分类器取得了显著的效果,包括 0.90 的高准确率、0.87 的高精确率和 0.93 的高召回率。这些指标不仅显示了较高的术后存活检测率,还显示了低偏差和高方差性能之间的平衡,确保该模型在不同的 IoMT 情景下既准确又可靠。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Prognostic Framework for Post-Operative Patient Survival Prediction in IoMT Free Space Quantum Key Distribution using the Differential Phase Shift Protocol in Urban Daylight Domain Compliant Recommendation of Remote Electrical Tilt Using ML Approach Performance Analysis of Multiple HAPS-Based Hybrid FSO/RF Space-Air-Ground Network A Generic $\alpha-\eta- \kappa-\mu$ Fading Environment based Indoor Localization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1