A Robust Feature Integration for Multiclass Metamorphic Malware Detection in IoT Network

Tisha Chawla, Saifur Rahman, Shantanu Pal, Chandan K. Karmakar
{"title":"A Robust Feature Integration for Multiclass Metamorphic Malware Detection in IoT Network","authors":"Tisha Chawla, Saifur Rahman, Shantanu Pal, Chandan K. Karmakar","doi":"10.1109/COMSNETS59351.2024.10427143","DOIUrl":null,"url":null,"abstract":"With the increase in the use of Internet of Things (IoT) services and applications, the escalating prevalence of metamorphic malware poses a significant challenge. Characterized by their ability to dynamically modify their code to evade detection, these advanced malware variants significantly compromise the security of IoT networks. This paper presents an approach for multiclass metamorphic malware detection in IoT networks, emphasizing the integration of diverse features by employing Convolutional Neural Networks (CNN) for intricate feature extraction, Principal Component Analysis (PCA) for eliminating multicollinearity between the features, and Random Forest (RF) for robust classification. Our proposed model demonstrates exceptional performance with macro-accuracy, macroprecision, macro-recall, and macro-F1 score of 97.44%, and a distinctive ROC-AUC score of 99.87%.","PeriodicalId":518748,"journal":{"name":"2024 16th International Conference on COMmunication Systems & NETworkS (COMSNETS)","volume":"16 1","pages":"412-414"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 16th International Conference on COMmunication Systems & NETworkS (COMSNETS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMSNETS59351.2024.10427143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the increase in the use of Internet of Things (IoT) services and applications, the escalating prevalence of metamorphic malware poses a significant challenge. Characterized by their ability to dynamically modify their code to evade detection, these advanced malware variants significantly compromise the security of IoT networks. This paper presents an approach for multiclass metamorphic malware detection in IoT networks, emphasizing the integration of diverse features by employing Convolutional Neural Networks (CNN) for intricate feature extraction, Principal Component Analysis (PCA) for eliminating multicollinearity between the features, and Random Forest (RF) for robust classification. Our proposed model demonstrates exceptional performance with macro-accuracy, macroprecision, macro-recall, and macro-F1 score of 97.44%, and a distinctive ROC-AUC score of 99.87%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
物联网网络中多类变态恶意软件检测的稳健特征集成
随着物联网(IoT)服务和应用程序使用的增加,变种恶意软件的流行率不断攀升,构成了一项重大挑战。这些高级恶意软件变种的特点是能够动态修改代码以逃避检测,极大地损害了物联网网络的安全。本文提出了一种在物联网网络中进行多类变种恶意软件检测的方法,强调通过使用卷积神经网络(CNN)进行复杂的特征提取,使用主成分分析(PCA)消除特征之间的多重共线性,使用随机森林(RF)进行稳健分类,从而整合各种特征。我们提出的模型表现出卓越的性能,其宏观准确率、宏观精度、宏观召回率和宏观 F1 得分为 97.44%,ROC-AUC 得分为 99.87%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Prognostic Framework for Post-Operative Patient Survival Prediction in IoMT Free Space Quantum Key Distribution using the Differential Phase Shift Protocol in Urban Daylight Domain Compliant Recommendation of Remote Electrical Tilt Using ML Approach Performance Analysis of Multiple HAPS-Based Hybrid FSO/RF Space-Air-Ground Network A Generic $\alpha-\eta- \kappa-\mu$ Fading Environment based Indoor Localization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1