Adaptive Energy Optimization for Edge-Enabled Autonomous Mobile Robots

Vincent Mageshkumar, Amit Baxi, Venkat Natarajan, Girish S. Murthy
{"title":"Adaptive Energy Optimization for Edge-Enabled Autonomous Mobile Robots","authors":"Vincent Mageshkumar, Amit Baxi, Venkat Natarajan, Girish S. Murthy","doi":"10.1109/COMSNETS59351.2024.10427411","DOIUrl":null,"url":null,"abstract":"In this work, we propose an advanced energy consumption model for an Autonomous Mobile Robots and validate the model on a real-world robot testbed. We show how our model can enable intelligent offloading of computationally heavy functions from the robot to an Edge server, over a wireless network, to minimize robot's energy consumption and maximize operating time on battery. Furthermore, we also present practical scenarios to show how our energy model can enable real-time adaptation of the Edge robotics system to constraints such as compute availability on the Edge server, available wireless network bandwidth, robot-specific camera frame rate requirements, robot navigation speeds and thereby improve robot energy efficiency. We show the benefits of our approach by offloading computationally heavy SLAM function from robot to the Edge server in simulation and through experiments on a real-world hardware testbed.","PeriodicalId":518748,"journal":{"name":"2024 16th International Conference on COMmunication Systems & NETworkS (COMSNETS)","volume":"351 6","pages":"117-122"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 16th International Conference on COMmunication Systems & NETworkS (COMSNETS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMSNETS59351.2024.10427411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we propose an advanced energy consumption model for an Autonomous Mobile Robots and validate the model on a real-world robot testbed. We show how our model can enable intelligent offloading of computationally heavy functions from the robot to an Edge server, over a wireless network, to minimize robot's energy consumption and maximize operating time on battery. Furthermore, we also present practical scenarios to show how our energy model can enable real-time adaptation of the Edge robotics system to constraints such as compute availability on the Edge server, available wireless network bandwidth, robot-specific camera frame rate requirements, robot navigation speeds and thereby improve robot energy efficiency. We show the benefits of our approach by offloading computationally heavy SLAM function from robot to the Edge server in simulation and through experiments on a real-world hardware testbed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
边缘自主移动机器人的自适应能量优化
在这项工作中,我们为自主移动机器人(Autonomous Mobile Robots)提出了一种先进的能耗模型,并在真实世界的机器人测试平台上对该模型进行了验证。我们展示了我们的模型如何通过无线网络实现智能卸载,将计算繁重的功能从机器人转移到边缘服务器,从而最大限度地降低机器人的能耗,并最大限度地延长电池的工作时间。此外,我们还介绍了一些实际应用场景,以展示我们的能源模型如何使边缘机器人系统实时适应各种约束条件,如边缘服务器上的计算可用性、可用无线网络带宽、机器人特定相机帧速率要求、机器人导航速度等,从而提高机器人的能源效率。我们在仿真中将计算量很大的 SLAM 功能从机器人卸载到 Edge 服务器,并在真实世界的硬件测试平台上进行了实验,从而展示了我们这种方法的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Prognostic Framework for Post-Operative Patient Survival Prediction in IoMT Free Space Quantum Key Distribution using the Differential Phase Shift Protocol in Urban Daylight Domain Compliant Recommendation of Remote Electrical Tilt Using ML Approach Performance Analysis of Multiple HAPS-Based Hybrid FSO/RF Space-Air-Ground Network A Generic $\alpha-\eta- \kappa-\mu$ Fading Environment based Indoor Localization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1