Paula Gil-Cabrerizo , Teresa Simon-Yarza , Elisa Garbayo , María J. Blanco Prieto
{"title":"Navigating the landscape of RNA delivery systems in cardiovascular disease therapeutics","authors":"Paula Gil-Cabrerizo , Teresa Simon-Yarza , Elisa Garbayo , María J. Blanco Prieto","doi":"10.1016/j.addr.2024.115302","DOIUrl":null,"url":null,"abstract":"<div><p>Cardiovascular diseases (CVDs) stand as the leading cause of death worldwide, posing a significant global health challenge. Consequently, the development of innovative therapeutic strategies to enhance CVDs treatment is imperative. RNA-based therapies, encompassing non-coding RNAs, mRNA, aptamers, and CRISPR/Cas9 technology, have emerged as promising tools for addressing CVDs. However, inherent challenges associated with RNA, such as poor cellular uptake, susceptibility to RNase degradation, and capture by the reticuloendothelial system, underscore the necessity of combining these therapies with effective drug delivery systems.</p><p>Various non-viral delivery systems, including extracellular vesicles, lipid-based carriers, polymeric and inorganic nanoparticles, as well as hydrogels, have shown promise in enhancing the efficacy of RNA therapeutics. In this review, we offer an overview of the most relevant RNA-based therapeutic strategies explored for addressing CVDs and emphasize the pivotal role of delivery systems in augmenting their effectiveness. Additionally, we discuss the current status of these therapies and the challenges that hinder their clinical translation.</p></div>","PeriodicalId":7254,"journal":{"name":"Advanced drug delivery reviews","volume":null,"pages":null},"PeriodicalIF":15.2000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0169409X24001248/pdfft?md5=b7d72182b1c54ed96276ba384add1421&pid=1-s2.0-S0169409X24001248-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced drug delivery reviews","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169409X24001248","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Cardiovascular diseases (CVDs) stand as the leading cause of death worldwide, posing a significant global health challenge. Consequently, the development of innovative therapeutic strategies to enhance CVDs treatment is imperative. RNA-based therapies, encompassing non-coding RNAs, mRNA, aptamers, and CRISPR/Cas9 technology, have emerged as promising tools for addressing CVDs. However, inherent challenges associated with RNA, such as poor cellular uptake, susceptibility to RNase degradation, and capture by the reticuloendothelial system, underscore the necessity of combining these therapies with effective drug delivery systems.
Various non-viral delivery systems, including extracellular vesicles, lipid-based carriers, polymeric and inorganic nanoparticles, as well as hydrogels, have shown promise in enhancing the efficacy of RNA therapeutics. In this review, we offer an overview of the most relevant RNA-based therapeutic strategies explored for addressing CVDs and emphasize the pivotal role of delivery systems in augmenting their effectiveness. Additionally, we discuss the current status of these therapies and the challenges that hinder their clinical translation.
期刊介绍:
The aim of the Journal is to provide a forum for the critical analysis of advanced drug and gene delivery systems and their applications in human and veterinary medicine. The Journal has a broad scope, covering the key issues for effective drug and gene delivery, from administration to site-specific delivery.
In general, the Journal publishes review articles in a Theme Issue format. Each Theme Issue provides a comprehensive and critical examination of current and emerging research on the design and development of advanced drug and gene delivery systems and their application to experimental and clinical therapeutics. The goal is to illustrate the pivotal role of a multidisciplinary approach to modern drug delivery, encompassing the application of sound biological and physicochemical principles to the engineering of drug delivery systems to meet the therapeutic need at hand. Importantly the Editorial Team of ADDR asks that the authors effectively window the extensive volume of literature, pick the important contributions and explain their importance, produce a forward looking identification of the challenges facing the field and produce a Conclusions section with expert recommendations to address the issues.