Mobilization of heavy metals from floodplain sediments of the Yellow River during redox fluctuations

IF 5.9 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Journal of Environmental Sciences-china Pub Date : 2024-04-02 DOI:10.1016/j.jes.2024.03.041
Fuyu Xie , Xiaoqing Li , Qingxiang Yang , Ying Meng , Fubo Luan
{"title":"Mobilization of heavy metals from floodplain sediments of the Yellow River during redox fluctuations","authors":"Fuyu Xie ,&nbsp;Xiaoqing Li ,&nbsp;Qingxiang Yang ,&nbsp;Ying Meng ,&nbsp;Fubo Luan","doi":"10.1016/j.jes.2024.03.041","DOIUrl":null,"url":null,"abstract":"<div><p>The floodplain of the Yellow River is a typical area characterized by redox fluctuations and heavy metal pollution. However, the mobilization behavior of heavy metals in floodplain sediments during redox fluctuations remains poorly understood. In this study, reductive mobilization of Fe and Mn was observed under reducing environments through reduction and dissolution, leading to the subsequent release of adsorbed As. In contrast, the mobilization of U occurred under oxic conditions, as the oxidative state of U(VI) has higher solubility. Furthermore, insignificant effects on the mobilization of Cd, Cu, Pb, and Hg were noticed during redox fluctuations, indicating higher stability of these heavy metals. Additionally, we demonstrated that carbon sources can play a key role in the mobilization of heavy metals in floodplain sediments, amplifying the reductive mobilization of Fe, Mn, As and the oxidative mobilization of U. Our findings contribute to the understanding of the biogeochemical cycling of heavy metal in floodplain sediments of the Yellow River and the factors that control this cycling.</p></div>","PeriodicalId":15788,"journal":{"name":"Journal of Environmental Sciences-china","volume":"150 ","pages":"Pages 432-439"},"PeriodicalIF":5.9000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Sciences-china","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S100107422400158X","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The floodplain of the Yellow River is a typical area characterized by redox fluctuations and heavy metal pollution. However, the mobilization behavior of heavy metals in floodplain sediments during redox fluctuations remains poorly understood. In this study, reductive mobilization of Fe and Mn was observed under reducing environments through reduction and dissolution, leading to the subsequent release of adsorbed As. In contrast, the mobilization of U occurred under oxic conditions, as the oxidative state of U(VI) has higher solubility. Furthermore, insignificant effects on the mobilization of Cd, Cu, Pb, and Hg were noticed during redox fluctuations, indicating higher stability of these heavy metals. Additionally, we demonstrated that carbon sources can play a key role in the mobilization of heavy metals in floodplain sediments, amplifying the reductive mobilization of Fe, Mn, As and the oxidative mobilization of U. Our findings contribute to the understanding of the biogeochemical cycling of heavy metal in floodplain sediments of the Yellow River and the factors that control this cycling.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氧化还原波动过程中黄河洪泛区沉积物中重金属的移动
黄河洪泛区是典型的氧化还原波动和重金属污染区。然而,人们对氧化还原波动过程中洪泛区沉积物中重金属的迁移行为仍然知之甚少。本研究观察到,在还原环境下,铁和锰通过还原和溶解发生还原迁移,导致吸附的砷随之释放。相比之下,由于氧化态的 U(VI)具有更高的溶解度,因此 U 的迁移发生在氧化态条件下。此外,氧化还原波动对镉、铜、铅和汞的迁移影响不大,这表明这些重金属具有更高的稳定性。我们的研究结果有助于了解黄河冲积平原沉积物中重金属的生物地球化学循环及其控制因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Environmental Sciences-china
Journal of Environmental Sciences-china 环境科学-环境科学
CiteScore
13.70
自引率
0.00%
发文量
6354
审稿时长
2.6 months
期刊介绍: The Journal of Environmental Sciences is an international journal started in 1989. The journal is devoted to publish original, peer-reviewed research papers on main aspects of environmental sciences, such as environmental chemistry, environmental biology, ecology, geosciences and environmental physics. Appropriate subjects include basic and applied research on atmospheric, terrestrial and aquatic environments, pollution control and abatement technology, conservation of natural resources, environmental health and toxicology. Announcements of international environmental science meetings and other recent information are also included.
期刊最新文献
Hydrothermal temperature-dependent compositions and copper complexing behaviors of hydrochar-derived dissolved organic matter: Insights from FT-ICR MS and multi-spectroscopic analysis Antibiotic resistance partitioning during on-farm manure separation and high temperature rotary drum composting Carbon dioxide reduction through mineral carbonation by steel slag Ultra-small cesium silver bismuth bromide quantum dots fabricated by modified hot-injection method for highly efficient degradation of contaminants in organic solvent Cement-mortar lining failure and metal release caused by electrochemical corrosion of ductile iron pipes in drinking water distribution systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1