Serajis Salekin, Yvette L. Dickinson, Mark Bloomberg, Dean F. Meason
{"title":"Carbon sequestration potential of plantation forests in New Zealand - no single tree species is universally best","authors":"Serajis Salekin, Yvette L. Dickinson, Mark Bloomberg, Dean F. Meason","doi":"10.1186/s13021-024-00257-1","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Plantation forests are a nature-based solution to sequester atmospheric carbon and, therefore, mitigate anthropogenic climate change. The choice of tree species for afforestation is subject to debate within New Zealand. Two key issues are whether to use (1) exotic plantation species versus indigenous forest species and (2) fast growing short-rotation species versus slower growing species. In addition, there is a lack of scientific knowledge about the carbon sequestration capabilities of different plantation tree species, which hinders the choice of species for optimal carbon sequestration. We contribute to this discussion by simulating carbon sequestration of five plantation forest species, <i>Pinus radiata</i>, <i>Pseudotsuga menziesii</i>, <i>Eucalyptus fastigata</i>, <i>Sequoia sempervirens</i> and <i>Podocarpus totara</i>, across three sites and two silvicultural regimes by using the 3-PG an ecophysiological model.</p><h3>Results</h3><p>The model simulations showed that carbon sequestration potential varies among the species, sites and silvicultural regimes. Indigenous <i>Podocarpus totara</i> or exotic <i>Sequoia sempervirens</i> can provide plausible options for long-term carbon sequestration. In contrast, short term rapid carbon sequestration can be obtained by planting exotic <i>Pinus radiata, Pseudotsuga menziesii</i> and <i>Eucalyptus fastigata</i>.</p><h3>Conclusion</h3><p>No single species was universally better at sequestering carbon on all sites we tested. In general, the results of this study suggest a robust framework for ranking and testing candidate afforestation species with regard to carbon sequestration potential at a given site. Hence, this study could help towards more efficient decision-making for carbon forestry.</p></div>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"19 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://cbmjournal.biomedcentral.com/counter/pdf/10.1186/s13021-024-00257-1","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Balance and Management","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1186/s13021-024-00257-1","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Plantation forests are a nature-based solution to sequester atmospheric carbon and, therefore, mitigate anthropogenic climate change. The choice of tree species for afforestation is subject to debate within New Zealand. Two key issues are whether to use (1) exotic plantation species versus indigenous forest species and (2) fast growing short-rotation species versus slower growing species. In addition, there is a lack of scientific knowledge about the carbon sequestration capabilities of different plantation tree species, which hinders the choice of species for optimal carbon sequestration. We contribute to this discussion by simulating carbon sequestration of five plantation forest species, Pinus radiata, Pseudotsuga menziesii, Eucalyptus fastigata, Sequoia sempervirens and Podocarpus totara, across three sites and two silvicultural regimes by using the 3-PG an ecophysiological model.
Results
The model simulations showed that carbon sequestration potential varies among the species, sites and silvicultural regimes. Indigenous Podocarpus totara or exotic Sequoia sempervirens can provide plausible options for long-term carbon sequestration. In contrast, short term rapid carbon sequestration can be obtained by planting exotic Pinus radiata, Pseudotsuga menziesii and Eucalyptus fastigata.
Conclusion
No single species was universally better at sequestering carbon on all sites we tested. In general, the results of this study suggest a robust framework for ranking and testing candidate afforestation species with regard to carbon sequestration potential at a given site. Hence, this study could help towards more efficient decision-making for carbon forestry.
期刊介绍:
Carbon Balance and Management is an open access, peer-reviewed online journal that encompasses all aspects of research aimed at developing a comprehensive policy relevant to the understanding of the global carbon cycle.
The global carbon cycle involves important couplings between climate, atmospheric CO2 and the terrestrial and oceanic biospheres. The current transformation of the carbon cycle due to changes in climate and atmospheric composition is widely recognized as potentially dangerous for the biosphere and for the well-being of humankind, and therefore monitoring, understanding and predicting the evolution of the carbon cycle in the context of the whole biosphere (both terrestrial and marine) is a challenge to the scientific community.
This demands interdisciplinary research and new approaches for studying geographical and temporal distributions of carbon pools and fluxes, control and feedback mechanisms of the carbon-climate system, points of intervention and windows of opportunity for managing the carbon-climate-human system.
Carbon Balance and Management is a medium for researchers in the field to convey the results of their research across disciplinary boundaries. Through this dissemination of research, the journal aims to support the work of the Intergovernmental Panel for Climate Change (IPCC) and to provide governmental and non-governmental organizations with instantaneous access to continually emerging knowledge, including paradigm shifts and consensual views.