Tailored Branched Polymer–Protein Bioconjugates for Tunable Sieving Performance

IF 5.1 Q1 POLYMER SCIENCE ACS Macro Letters Pub Date : 2024-04-04 DOI:10.1021/acsmacrolett.4c00059
Kriti Kapil, Hironobu Murata, Grzegorz Szczepaniak, Alan J. Russell and Krzysztof Matyjaszewski*, 
{"title":"Tailored Branched Polymer–Protein Bioconjugates for Tunable Sieving Performance","authors":"Kriti Kapil,&nbsp;Hironobu Murata,&nbsp;Grzegorz Szczepaniak,&nbsp;Alan J. Russell and Krzysztof Matyjaszewski*,&nbsp;","doi":"10.1021/acsmacrolett.4c00059","DOIUrl":null,"url":null,"abstract":"<p >Protein–polymer conjugates combine the unique properties of both proteins and synthetic polymers, making them important materials for biomedical applications. In this work, we synthesized and characterized protein-branched polymer bioconjugates that were precisely designed to retain protein functionality while preventing unwanted interactions. Using chymotrypsin as a model protein, we employed a controlled radical branching polymerization (CRBP) technique utilizing a water-soluble inibramer, sodium 2-bromoacrylate. The green-light-induced atom transfer radical polymerization (ATRP) enabled the grafting of branched polymers directly from the protein surface in the open air. The resulting bioconjugates exhibited a predetermined molecular weight, well-defined architecture, and high branching density. Conformational analysis by SEC-MALS validated the controlled grafting of branched polymers. Furthermore, enzymatic assays revealed that densely grafted polymers prevented protein inhibitor penetration, and the resulting conjugates retained up to 90% of their enzymatic activity. This study demonstrates a promising strategy for designing protein–polymer bioconjugates with tunable sieving behavior, opening avenues for applications in drug delivery and biotechnology.</p>","PeriodicalId":18,"journal":{"name":"ACS Macro Letters","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmacrolett.4c00059","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Macro Letters","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmacrolett.4c00059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Protein–polymer conjugates combine the unique properties of both proteins and synthetic polymers, making them important materials for biomedical applications. In this work, we synthesized and characterized protein-branched polymer bioconjugates that were precisely designed to retain protein functionality while preventing unwanted interactions. Using chymotrypsin as a model protein, we employed a controlled radical branching polymerization (CRBP) technique utilizing a water-soluble inibramer, sodium 2-bromoacrylate. The green-light-induced atom transfer radical polymerization (ATRP) enabled the grafting of branched polymers directly from the protein surface in the open air. The resulting bioconjugates exhibited a predetermined molecular weight, well-defined architecture, and high branching density. Conformational analysis by SEC-MALS validated the controlled grafting of branched polymers. Furthermore, enzymatic assays revealed that densely grafted polymers prevented protein inhibitor penetration, and the resulting conjugates retained up to 90% of their enzymatic activity. This study demonstrates a promising strategy for designing protein–polymer bioconjugates with tunable sieving behavior, opening avenues for applications in drug delivery and biotechnology.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可调节筛分性能的定制支化聚合物-蛋白质生物共轭物
蛋白质-聚合物共轭物结合了蛋白质和合成聚合物的独特性质,使其成为生物医学应用的重要材料。在这项工作中,我们合成并鉴定了蛋白质支化聚合物生物共轭物,这些共轭物经过精确设计,既能保留蛋白质的功能,又能防止不必要的相互作用。我们以糜蛋白酶为模型蛋白,利用水溶性嵌段聚合剂 2-溴丙烯酸钠,采用受控自由基支化聚合(CRBP)技术。通过绿光诱导的原子转移自由基聚合(ATRP)技术,支化聚合物可以在露天直接从蛋白质表面接枝。生成的生物共轭物具有预定的分子量、明确的结构和较高的支化密度。通过 SEC-MALS 进行的构象分析验证了支化聚合物的可控接枝。此外,酶学测定显示,密集接枝的聚合物可防止蛋白质抑制剂渗透,由此产生的共轭物可保持高达 90% 的酶活性。这项研究为设计具有可调筛分行为的蛋白质-聚合物生物共轭物展示了一种前景广阔的策略,为药物输送和生物技术领域的应用开辟了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.40
自引率
3.40%
发文量
209
审稿时长
1 months
期刊介绍: ACS Macro Letters publishes research in all areas of contemporary soft matter science in which macromolecules play a key role, including nanotechnology, self-assembly, supramolecular chemistry, biomaterials, energy generation and storage, and renewable/sustainable materials. Submissions to ACS Macro Letters should justify clearly the rapid disclosure of the key elements of the study. The scope of the journal includes high-impact research of broad interest in all areas of polymer science and engineering, including cross-disciplinary research that interfaces with polymer science. With the launch of ACS Macro Letters, all Communications that were formerly published in Macromolecules and Biomacromolecules will be published as Letters in ACS Macro Letters.
期刊最新文献
Mechanism of Interconnected Pore Formation in High Internal Phase Emulsion-Templated Polymer. Quantifying and Modeling the Crystallinity of Polymers Confined in Nanopores. Dynamic Implications of Noncovalent Interactions in Amphiphilic Single-Chain Polymer Nanoparticles. Entanglement Kinetics in Polymer Melts Are Chemically Specific. Stably Grafting Polymer Brushes on Both Active and Inert Surfaces Using Tadpole-Like Single-Chain Particles with an Interactive "Head".
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1