Pub Date : 2024-11-19DOI: 10.1021/acsmacrolett.4c00642
Evan K Stacy, Mac L McCormick, Kaden C Stevens, Penelope E Jankoski, Jeff Aguinaga, Derek L Patton, Brent S Sumerlin, Tristan D Clemons
Polyacrylonitrile (PAN) is a key industrial polymer for the production of carbon fiber for high-strength, lightweight composite material applications, with an estimated 90% of the carbon fiber market relying on PAN-based polymers. Traditionally, PAN synthesis is achieved by conventional radical polymerization, resulting in broad molecular weight distributions and the use of toxic organic solvents or surfactants during the synthesis. Additionally, attempts to improve polymer and processing properties by controlled radical polymerization methods suffer from low monomer conversions and struggle to achieve molecular weights suitable for producing high-performance carbon fiber. In this study, we present an aqueous photoiniferter (aqPI) polymerization of acrylonitrile, achieving high monomer conversion and high PAN molecular weights with significantly faster kinetics and dispersity control when compared to traditional methods. This approach allows for the unprecedented control of polymer properties that are integral for downstream processing for enhanced carbon fiber production.
聚丙烯腈(PAN)是生产高强度、轻质复合材料用碳纤维的主要工业聚合物,据估计,90% 的碳纤维市场依赖于 PAN 基聚合物。传统上,PAN 的合成是通过传统的自由基聚合法实现的,因此分子量分布较广,合成过程中需要使用有毒的有机溶剂或表面活性剂。此外,试图通过受控自由基聚合方法来改善聚合物和加工性能的尝试受到了单体转化率低的困扰,并且难以获得适合生产高性能碳纤维的分子量。在本研究中,我们介绍了一种丙烯腈的水性光增塑剂(aqPI)聚合方法,与传统方法相比,该方法实现了高单体转化率和高 PAN 分子量,且动力学和分散度控制明显更快。这种方法可对聚合物特性进行前所未有的控制,而聚合物特性是下游加工过程中不可或缺的一部分,可提高碳纤维的产量。
{"title":"Aqueous Photoiniferter Polymerization of Acrylonitrile.","authors":"Evan K Stacy, Mac L McCormick, Kaden C Stevens, Penelope E Jankoski, Jeff Aguinaga, Derek L Patton, Brent S Sumerlin, Tristan D Clemons","doi":"10.1021/acsmacrolett.4c00642","DOIUrl":"https://doi.org/10.1021/acsmacrolett.4c00642","url":null,"abstract":"<p><p>Polyacrylonitrile (PAN) is a key industrial polymer for the production of carbon fiber for high-strength, lightweight composite material applications, with an estimated 90% of the carbon fiber market relying on PAN-based polymers. Traditionally, PAN synthesis is achieved by conventional radical polymerization, resulting in broad molecular weight distributions and the use of toxic organic solvents or surfactants during the synthesis. Additionally, attempts to improve polymer and processing properties by controlled radical polymerization methods suffer from low monomer conversions and struggle to achieve molecular weights suitable for producing high-performance carbon fiber. In this study, we present an aqueous photoiniferter (aqPI) polymerization of acrylonitrile, achieving high monomer conversion and high PAN molecular weights with significantly faster kinetics and dispersity control when compared to traditional methods. This approach allows for the unprecedented control of polymer properties that are integral for downstream processing for enhanced carbon fiber production.</p>","PeriodicalId":18,"journal":{"name":"ACS Macro Letters","volume":" ","pages":"1662-1669"},"PeriodicalIF":5.1,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-15DOI: 10.1021/acsmacrolett.4c00598
Yisong Wang, Bingxue Jiang, Zhengqi Peng, Khak Ho Lim, Qingyue Wang, Shengbin Shi, Jieyuan Zheng, Deliang Wang, Xuan Yang, Pingwei Liu, Wen-Jun Wang
The performances and properties of random copolyesters, including biodegradability, mechanical and thermal properties, transparency, etc., are highly influenced by their chain structures. However, obtaining detailed chain sequence information remains a significant challenge. This study introduces a mathematical model based on a probabilistic approach to determine the sequence length and distribution in random copolyesters. Two types of copolyesters, A1A1BB-A2A2BB, representing poly(butylene adipate-co-terephthalate) (PBAT), and A1A1B1B1-A2B2, using poly(butylene succinate-co-glycolic acid) (PBT–PGA) as an example, are the focus. The predicted sequence lengths of various copolyesters derived from the model are in good agreement with the values reported in the literature. The chain sequence distribution obtained from the model provides better insights into the unique properties of the copolyesters. It is observed that the incorporation of hydroxyl acid units into copolyester chains effectively reduces the sequence length without altering the copolymer composition, offering a strategic approach for enhancing degradation performance while maintaining mechanical properties of random copolyesters. The influence of the number-average sequence length becomes particularly significant when the copolymer composition ranges between 0.7 and 0.9, with a higher copolymer composition required for copolyesters containing hydroxyl acid monomer units. This model represents a powerful tool for researchers, enabling a deeper understanding of the relationship between copolymer composition and its structural characteristics in random copolyesters and facilitating the development of high-performance random copolyesters.
{"title":"Modeling of Chain Sequence Length and Distribution in Random Copolyesters","authors":"Yisong Wang, Bingxue Jiang, Zhengqi Peng, Khak Ho Lim, Qingyue Wang, Shengbin Shi, Jieyuan Zheng, Deliang Wang, Xuan Yang, Pingwei Liu, Wen-Jun Wang","doi":"10.1021/acsmacrolett.4c00598","DOIUrl":"https://doi.org/10.1021/acsmacrolett.4c00598","url":null,"abstract":"The performances and properties of random copolyesters, including biodegradability, mechanical and thermal properties, transparency, etc., are highly influenced by their chain structures. However, obtaining detailed chain sequence information remains a significant challenge. This study introduces a mathematical model based on a probabilistic approach to determine the sequence length and distribution in random copolyesters. Two types of copolyesters, A<sub>1</sub>A<sub>1</sub>BB-A<sub>2</sub>A<sub>2</sub>BB, representing poly(butylene adipate-<i>co</i>-terephthalate) (PBAT), and A<sub>1</sub>A<sub>1</sub>B<sub>1</sub>B<sub>1</sub>-A<sub>2</sub>B<sub>2</sub>, using poly(butylene succinate-<i>co</i>-glycolic acid) (PBT–PGA) as an example, are the focus. The predicted sequence lengths of various copolyesters derived from the model are in good agreement with the values reported in the literature. The chain sequence distribution obtained from the model provides better insights into the unique properties of the copolyesters. It is observed that the incorporation of hydroxyl acid units into copolyester chains effectively reduces the sequence length without altering the copolymer composition, offering a strategic approach for enhancing degradation performance while maintaining mechanical properties of random copolyesters. The influence of the number-average sequence length becomes particularly significant when the copolymer composition ranges between 0.7 and 0.9, with a higher copolymer composition required for copolyesters containing hydroxyl acid monomer units. This model represents a powerful tool for researchers, enabling a deeper understanding of the relationship between copolymer composition and its structural characteristics in random copolyesters and facilitating the development of high-performance random copolyesters.","PeriodicalId":18,"journal":{"name":"ACS Macro Letters","volume":"246 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-15DOI: 10.1021/acsmacrolett.4c00660
Tobias O Morgen, Stefan Mecking
Cross-linked polyethylenes (PEs) are widely employed, but the permanent links between the chains impede recycling. We show that via imine formation with diamines keto-functionalized polyethylenes from both free-radical (keto-low-density PE, keto-LDPE) and catalytic (keto-high-density PE, keto-HDPE) nonalternating ethylene-CO copolymerization can be cross-linked efficiently in the melt, resulting in gel fractions of the formed cross-linked PEs of up to 85% and improved tensile properties. The imine-based cross-links in the material can be hydrolyzed at 140 °C to recycle up to 97% of the initial thermoplastic keto-polyethylene. Low keto contents of ≤1.5 mol % are found ideal to retain PE-like thermal properties, achieve sufficient cross-link density, and maintain circular recyclability.
交联聚乙烯(PE)被广泛使用,但其链之间的永久性连接阻碍了回收利用。我们的研究表明,通过与二胺形成亚胺,自由基(酮基低密度聚乙烯,keto-LDPE)和催化(酮基高密度聚乙烯,keto-HDPE)非交替乙烯-CO 共聚产生的酮基官能团聚乙烯可在熔体中高效交联,从而使形成的交联聚乙烯凝胶分数高达 85%,并改善了拉伸性能。材料中的亚胺基交联可在 140 °C 下水解,从而回收高达 97% 的初始热塑性酮基聚乙烯。低酮含量(≤1.5 mol %)是保持类似聚乙烯的热性能、达到足够的交联密度和保持循环可回收性的理想选择。
{"title":"Circular Cross-Linked Polyethylene Enabled by In-Chain Ketones.","authors":"Tobias O Morgen, Stefan Mecking","doi":"10.1021/acsmacrolett.4c00660","DOIUrl":"https://doi.org/10.1021/acsmacrolett.4c00660","url":null,"abstract":"<p><p>Cross-linked polyethylenes (PEs) are widely employed, but the permanent links between the chains impede recycling. We show that via imine formation with diamines keto-functionalized polyethylenes from both free-radical (keto-low-density PE, keto-LDPE) and catalytic (keto-high-density PE, keto-HDPE) nonalternating ethylene-CO copolymerization can be cross-linked efficiently in the melt, resulting in gel fractions of the formed cross-linked PEs of up to 85% and improved tensile properties. The imine-based cross-links in the material can be hydrolyzed at 140 °C to recycle up to 97% of the initial thermoplastic keto-polyethylene. Low keto contents of ≤1.5 mol % are found ideal to retain PE-like thermal properties, achieve sufficient cross-link density, and maintain circular recyclability.</p>","PeriodicalId":18,"journal":{"name":"ACS Macro Letters","volume":" ","pages":"1655-1661"},"PeriodicalIF":5.1,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142638007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-15DOI: 10.1021/acsmacrolett.4c00737
Qianhao Ye, Kaixuan Chen, Chengda Zhou, Mengli Xu, Mao Chen
Fluoropolymers of well-defined structures exhibit significant potential in a broad range of high-tech applications. However, the controlled synthesis of fluoropolymers from easily available monomers remains difficult. In this work, we report the development of an organocatalyzed controlled radical copolymerization of (perfluoroalkyl)ethylenes (PFAEs) and unconjugated vinyl monomers (UCMs) under light irradiation, which has enabled on-demand access toward side-chain fluorinated polymers under metal-free conditions. This method furnishes a large variety of polymers with diverse fluoroalkyl and ester/amide as pendent groups, tunable molar masses, and low dispersities (ca. Đ = 1.1–1.3), and adjustable fractions of PFAE and UCM units. Obtained fluoropolymers exhibit good chain-end fidelity and activity, allowing chain-extension polymerizations to prepare block copolymers of complicated compositions. Furthermore, the PFAE copolymers exhibit outstanding light transmission and low refractive index.
{"title":"Light-Driven Organocatalyzed Controlled Radical Copolymerization of (Perfluoroalkyl)ethylenes and Vinyl Esters/Amides","authors":"Qianhao Ye, Kaixuan Chen, Chengda Zhou, Mengli Xu, Mao Chen","doi":"10.1021/acsmacrolett.4c00737","DOIUrl":"https://doi.org/10.1021/acsmacrolett.4c00737","url":null,"abstract":"Fluoropolymers of well-defined structures exhibit significant potential in a broad range of high-tech applications. However, the controlled synthesis of fluoropolymers from easily available monomers remains difficult. In this work, we report the development of an organocatalyzed controlled radical copolymerization of (perfluoroalkyl)ethylenes (PFAEs) and unconjugated vinyl monomers (UCMs) under light irradiation, which has enabled on-demand access toward side-chain fluorinated polymers under metal-free conditions. This method furnishes a large variety of polymers with diverse fluoroalkyl and ester/amide as pendent groups, tunable molar masses, and low dispersities (ca. <i>Đ</i> = 1.1–1.3), and adjustable fractions of PFAE and UCM units. Obtained fluoropolymers exhibit good chain-end fidelity and activity, allowing chain-extension polymerizations to prepare block copolymers of complicated compositions. Furthermore, the PFAE copolymers exhibit outstanding light transmission and low refractive index.","PeriodicalId":18,"journal":{"name":"ACS Macro Letters","volume":"162 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-14DOI: 10.1038/s42256-024-00914-7
Yunqi Cai, Jiangnan Li, Dong Wang
Important progress has been made in micromagnetics, driven by its wide-ranging applications in magnetic storage design. Numerical simulation, a cornerstone of micromagnetics research, relies on first-principles rules to compute the dynamic evolution of micromagnetic systems using the renowned Landau–Lifshitz–Gilbert equation, named after Landau, Lifshitz and Gilbert. However, these simulations are often hindered by their slow speeds. Although fast Fourier transformation calculations reduce the computational complexity to O(Nlog(N)), it remains impractical for large-scale simulations. Here we introduce NeuralMAG, a deep learning approach to micromagnetic simulation. Our approach follows the Landau–Lifshitz–Gilbert iterative framework but accelerates computation of demagnetizing fields by employing a U-shaped neural network. This neural network architecture comprises an encoder that extracts aggregated spins at various scales and learns the local interaction at each scale, followed by a decoder that accumulates the local interactions at different scales to approximate the global convolution. This divide-and-accumulate scheme achieves a time complexity of O(N), notably enhancing the speed and feasibility of large-scale simulations. Unlike existing neural methods, NeuralMAG concentrates on the core computation—rather than an end-to-end approximation for a specific task—making it inherently generalizable. To validate the new approach, we trained a single model and evaluated it on two micromagnetics tasks with various sample sizes, shapes and material settings.
{"title":"Fast and generalizable micromagnetic simulation with deep neural nets","authors":"Yunqi Cai, Jiangnan Li, Dong Wang","doi":"10.1038/s42256-024-00914-7","DOIUrl":"https://doi.org/10.1038/s42256-024-00914-7","url":null,"abstract":"<p>Important progress has been made in micromagnetics, driven by its wide-ranging applications in magnetic storage design. Numerical simulation, a cornerstone of micromagnetics research, relies on first-principles rules to compute the dynamic evolution of micromagnetic systems using the renowned Landau–Lifshitz–Gilbert equation, named after Landau, Lifshitz and Gilbert. However, these simulations are often hindered by their slow speeds. Although fast Fourier transformation calculations reduce the computational complexity to O(<i>N</i>log(<i>N</i>)), it remains impractical for large-scale simulations. Here we introduce NeuralMAG, a deep learning approach to micromagnetic simulation. Our approach follows the Landau–Lifshitz–Gilbert iterative framework but accelerates computation of demagnetizing fields by employing a U-shaped neural network. This neural network architecture comprises an encoder that extracts aggregated spins at various scales and learns the local interaction at each scale, followed by a decoder that accumulates the local interactions at different scales to approximate the global convolution. This divide-and-accumulate scheme achieves a time complexity of O(<i>N</i>), notably enhancing the speed and feasibility of large-scale simulations. Unlike existing neural methods, NeuralMAG concentrates on the core computation—rather than an end-to-end approximation for a specific task—making it inherently generalizable. To validate the new approach, we trained a single model and evaluated it on two micromagnetics tasks with various sample sizes, shapes and material settings.</p>","PeriodicalId":18,"journal":{"name":"ACS Macro Letters","volume":"98 1","pages":""},"PeriodicalIF":23.8,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142610316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-14DOI: 10.1016/j.ensm.2024.103908
Bo Yan, Yilong Yu, Hao Sun, Xueping Liu, Yahao Li, Lulu Zhang, Xuelin Yang, Shengkui Zhong, Renheng Wang
Self-supporting electrode materials are instrumental in accelerating the development of flexible potassium-ion batteries (PIBs). However, the challenge lies in designing self-supporting materials with sophisticated structures and compositions to overcome the sluggish kinetics and volume effect caused by the large size of potassium ions during K-storage. In this work, we present novel flexible anodes synthesized by confining hollow NiSe/SnSe nanocubes within nitrogen-doped carbon nanofibers (H-NiSe/SnSe@NC). Leveraging its unique organization and composition, the H-NiSe/SnSe@NC anode exhibits impressive initial Coulombic efficiency, excellent rate capability, and exceptional cyclability, even at high mass loadings, outperforming most reported PIBs anodes. Utilizing in-situ XRD and ex-situ TEM techniques, we elucidate the mechanism responsible for its high capacity and gain insights into the K-storage behavior and reaction kinetics through diverse electrochemical measurements. First-principles calculations further clarify the underlying mechanism by which the designed heterostructured anode enhances the adsorption/diffusion of K-ions. Additionally, we integrate this novel anode into full cells, achieving high energy density and extended cycling life. Remarkably, the pouch cell we fabricated delivers high reversible capacity and cyclability even under periodic bending conditions, highlighting its superiority for flexible devices. This research showcases the significance of designing and fabricating advanced self-supporting electrodes for flexible PIBs applications.
自支撑电极材料有助于加速柔性钾离子电池(PIB)的开发。然而,如何设计具有复杂结构和成分的自支撑材料,以克服钾离子储存过程中因钾离子尺寸过大而导致的动力学迟缓和体积效应,是一项挑战。在这项工作中,我们介绍了通过将空心镍硒/硒纳米立方体限制在掺氮碳纳米纤维(H-NiSe/SnSe@NC)内合成的新型柔性阳极。利用其独特的组织和成分,H-NiSe/SnSe@NC 阳极即使在高负载情况下也能表现出令人印象深刻的初始库仑效率、出色的速率能力和卓越的循环性,优于大多数已报道的 PIBs 阳极。利用原位 XRD 和原位 TEM 技术,我们阐明了造成其高容量的机理,并通过各种电化学测量深入了解了 K 存储行为和反应动力学。第一性原理计算进一步阐明了所设计的异质结构阳极增强 K 离子吸附/扩散的基本机制。此外,我们还将这种新型阳极集成到全电池中,实现了高能量密度并延长了循环寿命。值得注意的是,即使在周期性弯曲条件下,我们制造的袋式电池也能提供高可逆容量和循环能力,突出了其在柔性设备方面的优越性。这项研究展示了为柔性 PIB 应用设计和制造先进自支撑电极的重要意义。
{"title":"Flexible Potassium-Ion Batteries Enabled by Encapsulating Hollow NiSe/SnSe Nanocubes within Freestanding N-doped Carbon Nanofibers","authors":"Bo Yan, Yilong Yu, Hao Sun, Xueping Liu, Yahao Li, Lulu Zhang, Xuelin Yang, Shengkui Zhong, Renheng Wang","doi":"10.1016/j.ensm.2024.103908","DOIUrl":"https://doi.org/10.1016/j.ensm.2024.103908","url":null,"abstract":"Self-supporting electrode materials are instrumental in accelerating the development of flexible potassium-ion batteries (PIBs). However, the challenge lies in designing self-supporting materials with sophisticated structures and compositions to overcome the sluggish kinetics and volume effect caused by the large size of potassium ions during K-storage. In this work, we present novel flexible anodes synthesized by confining hollow NiSe/SnSe nanocubes within nitrogen-doped carbon nanofibers (H-NiSe/SnSe@NC). Leveraging its unique organization and composition, the H-NiSe/SnSe@NC anode exhibits impressive initial Coulombic efficiency, excellent rate capability, and exceptional cyclability, even at high mass loadings, outperforming most reported PIBs anodes. Utilizing in-situ XRD and ex-situ TEM techniques, we elucidate the mechanism responsible for its high capacity and gain insights into the K-storage behavior and reaction kinetics through diverse electrochemical measurements. First-principles calculations further clarify the underlying mechanism by which the designed heterostructured anode enhances the adsorption/diffusion of K-ions. Additionally, we integrate this novel anode into full cells, achieving high energy density and extended cycling life. Remarkably, the pouch cell we fabricated delivers high reversible capacity and cyclability even under periodic bending conditions, highlighting its superiority for flexible devices. This research showcases the significance of designing and fabricating advanced self-supporting electrodes for flexible PIBs applications.","PeriodicalId":18,"journal":{"name":"ACS Macro Letters","volume":"34 1","pages":""},"PeriodicalIF":20.4,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142610448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-14DOI: 10.1021/acsmacrolett.4c00512
Dongho Lee, Doyoung Byun, Dae-Hyun Cho
Total internal reflection (TIR)-based structural coloration is a brilliant strategy to overcome the need for periodic nanostructures and complex fabrication processes. Light entering the microdome structure undergoes TIR, and owing to varying reflection paths, it exhibits a color that changes with the microdome size. Although solution-based printing techniques have been proposed to achieve this effect, they fall short of full-color realization owing to resolution limitations. Herein, we achieved 3628 dpi of full-color and high-resolution structural color images by printing transparent microdome structures with 1.2-9.9 μm diameter using electrohydrodynamic (EHD) jet printing. Additionally, high-resolution EHD jet-printed structural color images display complex encoded information, enhancing the anticounterfeiting effectiveness through their fabrication simplicity and precise control over the microdome size. Because of these advantages, this TIR-based structural coloration technique with EHD jet printing is highly suitable for anticounterfeiting applications.
{"title":"High-Resolution Total Internal Reflection-Based Structural Coloration by Electrohydrodynamic Jet Printing of Transparent Polyethylene Glycol Microdomes.","authors":"Dongho Lee, Doyoung Byun, Dae-Hyun Cho","doi":"10.1021/acsmacrolett.4c00512","DOIUrl":"https://doi.org/10.1021/acsmacrolett.4c00512","url":null,"abstract":"<p><p>Total internal reflection (TIR)-based structural coloration is a brilliant strategy to overcome the need for periodic nanostructures and complex fabrication processes. Light entering the microdome structure undergoes TIR, and owing to varying reflection paths, it exhibits a color that changes with the microdome size. Although solution-based printing techniques have been proposed to achieve this effect, they fall short of full-color realization owing to resolution limitations. Herein, we achieved 3628 dpi of full-color and high-resolution structural color images by printing transparent microdome structures with 1.2-9.9 μm diameter using electrohydrodynamic (EHD) jet printing. Additionally, high-resolution EHD jet-printed structural color images display complex encoded information, enhancing the anticounterfeiting effectiveness through their fabrication simplicity and precise control over the microdome size. Because of these advantages, this TIR-based structural coloration technique with EHD jet printing is highly suitable for anticounterfeiting applications.</p>","PeriodicalId":18,"journal":{"name":"ACS Macro Letters","volume":" ","pages":"1634-1639"},"PeriodicalIF":5.1,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142612744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Garnet-type solid-state electrolytes with exceptional stability are believed to promote the commercialization of all solid-state lithium metal batteries. However, the extensive application of garnet-type solid-state electrolytes is greatly impeded on account of their low ionic conductivity. Herein, a high-entropy fast lithium-ion conductor Li7(La,Nd,Sr)3(Zr,Ta)2O12 (LLNSZTO) with high lattice distortion is designed. It is found that the enhanced ionic conductivity of the high entropy garnet-type solid-state electrolyte LLNSZTO is achieved by introducing disorder in the lattice, which creates fast ion penetration paths with flattened energy landscapes within the pristine ordered lattice. Thus, the prepared high-entropy garnet-type solid electrolyte LLNSZTO exhibits low activation energy for Li+ migration (0.34 eV) and elevated ionic conductivity (6.26 × 10−4 S cm−1). Full cells assembled with LLNSZTO electrolyte, lithium metal anode, and LiFePO4 (LFP) cathode exhibit excellent capacity retention of 86.81% after 200 cycles at room temperature. Moreover, the superior ionic conductivity of LLNSZTO enables all solid-state battery with high-loading LFP cathode (>12 mg cm−2), achieving stable cycling exceeding 120 cycles. The large area pouch cell (5.5 cm × 8 cm) exhibits stable long-term cycling performance, showing a capacity retention of 96.50% after 50 cycles.
{"title":"High-Entropy Strategy Flattening Lithium Ion Migration Energy Landscape to Enhance the Conductivity of Garnet-Type Solid-State Electrolytes","authors":"Shuhan Wang, Xiaojuan Wen, Zhenweican Huang, Haoyang Xu, Fengxia Fan, Xinxiang Wang, Guilei Tian, Sheng Liu, Pengfei Liu, Chuan Wang, Chenrui Zeng, Chaozhu Shu, Zhenxing Liang","doi":"10.1002/adfm.202416389","DOIUrl":"https://doi.org/10.1002/adfm.202416389","url":null,"abstract":"Garnet-type solid-state electrolytes with exceptional stability are believed to promote the commercialization of all solid-state lithium metal batteries. However, the extensive application of garnet-type solid-state electrolytes is greatly impeded on account of their low ionic conductivity. Herein, a high-entropy fast lithium-ion conductor Li<sub>7</sub>(La,Nd,Sr)<sub>3</sub>(Zr,Ta)<sub>2</sub>O<sub>12</sub> (LLNSZTO) with high lattice distortion is designed. It is found that the enhanced ionic conductivity of the high entropy garnet-type solid-state electrolyte LLNSZTO is achieved by introducing disorder in the lattice, which creates fast ion penetration paths with flattened energy landscapes within the pristine ordered lattice. Thus, the prepared high-entropy garnet-type solid electrolyte LLNSZTO exhibits low activation energy for Li<sup>+</sup> migration (0.34 eV) and elevated ionic conductivity (6.26 × 10<sup>−4</sup> S cm<sup>−1</sup>). Full cells assembled with LLNSZTO electrolyte, lithium metal anode, and LiFePO<sub>4</sub> (LFP) cathode exhibit excellent capacity retention of 86.81% after 200 cycles at room temperature. Moreover, the superior ionic conductivity of LLNSZTO enables all solid-state battery with high-loading LFP cathode (>12 mg cm<sup>−2</sup>), achieving stable cycling exceeding 120 cycles. The large area pouch cell (5.5 cm × 8 cm) exhibits stable long-term cycling performance, showing a capacity retention of 96.50% after 50 cycles.","PeriodicalId":18,"journal":{"name":"ACS Macro Letters","volume":"5 1","pages":""},"PeriodicalIF":19.0,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142610088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A nonporous [Pb(tadt)]n (tadt = 1,3,4-thiadiazole-2,5-dithiolate) coordination polymer, KGF-9, with a 2D infinite (−Pb−S−)n structure has been previously reported as a precious-metal-free photocatalyst for selective CO2-to-formate conversion under visible light. In the present work, a microwave (MW)-assisted solvothermal reaction is used to synthesize KGF-9 with improved physicochemical properties and catalytic activity. Compared with KGF-9 prepared by the previously reported methods, that prepared by the new synthesis route exhibited a greater specific surface area, greater crystallinity, and greater photoconductivity. These improved properties led to a drastic increase of the apparent quantum yield (AQY) for selective formate production, from 2.6 to 25% at 400 nm; this AQY represents a record-high value among reported heterogeneous photocatalysts for CO2-to-formate conversion. Interestingly, the AQY for formate production is unchanged irrespective of the light intensity (0.04–14 mW cm−2), indicating little contribution of charge accumulation in the bulk during the reaction (i.e., indicating efficient charge transport to surface reactants). When composited with Ketjen Black, KGF-9 enabled the electrochemical conversion of CO2 to formate in aqueous solution while maintaining a high selectivity. A high-rate reduction of CO2 to formate with a total absolute current density of 200–300 mA cm−2 is achieved, with a Faradaic efficiency (FE) of >90%.
{"title":"Fibrous Pb(II)-Based Coordination Polymer Operable as a Photocatalyst and Electrocatalyst for High-Rate, Selective CO2-to-Formate Conversion","authors":"Chomponoot Suppaso, Ryosuke Nakazato, Shoko Nakahata, Yoshinobu Kamakura, Fumitaka Ishiwari, Akinori Saeki, Daisuke Tanaka, Kazuhide Kamiya, Kazuhiko Maeda","doi":"10.1002/adfm.202417223","DOIUrl":"https://doi.org/10.1002/adfm.202417223","url":null,"abstract":"A nonporous [Pb(tadt)]<i><sub>n</sub></i> (tadt = 1,3,4-thiadiazole-2,5-dithiolate) coordination polymer, KGF-9, with a 2D infinite (−Pb−S−)<i><sub>n</sub></i> structure has been previously reported as a precious-metal-free photocatalyst for selective CO<sub>2</sub>-to-formate conversion under visible light. In the present work, a microwave (MW)-assisted solvothermal reaction is used to synthesize KGF-9 with improved physicochemical properties and catalytic activity. Compared with KGF-9 prepared by the previously reported methods, that prepared by the new synthesis route exhibited a greater specific surface area, greater crystallinity, and greater photoconductivity. These improved properties led to a drastic increase of the apparent quantum yield (AQY) for selective formate production, from 2.6 to 25% at 400 nm; this AQY represents a record-high value among reported heterogeneous photocatalysts for CO<sub>2</sub>-to-formate conversion. Interestingly, the AQY for formate production is unchanged irrespective of the light intensity (0.04–14 mW cm<sup>−2</sup>), indicating little contribution of charge accumulation in the bulk during the reaction (i.e., indicating efficient charge transport to surface reactants). When composited with Ketjen Black, KGF-9 enabled the electrochemical conversion of CO<sub>2</sub> to formate in aqueous solution while maintaining a high selectivity. A high-rate reduction of CO<sub>2</sub> to formate with a total absolute current density of 200–300 mA cm<sup>−2</sup> is achieved, with a Faradaic efficiency (FE) of >90%.","PeriodicalId":18,"journal":{"name":"ACS Macro Letters","volume":"16 1","pages":""},"PeriodicalIF":19.0,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142601982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiaqi Ding, Haonan Gu, Yao Shi, Yi He, Yaqiong Su, Mi Yan, Pengfei Xie
Ceria-supported precious metal catalysts have undergone extensive investigation for the catalytic methane combustion. However, it remains a significant challenge to achieve both highly synergistic oxidation activity and efficient atom utilization remains a challenge for commonly used supported nanoparticles and single-atom catalysts. Dual-atom catalysts (DACs) emerges as a frontier of advanced catalysts, presenting unique catalytic properties that benefit from the synergy of neighboring metal sites. In this study, 361 ceria-supported DACs (M1M2/CeO2) encompassing combinations of 19 transition metals are systematically explored. Using high-throughput density functional theory calculations, the structures, stability as well as activity of M1M2/CeO2 are assessed. Notably, Au1Ga1/CeO2 is identified as a promising DAC exhibiting high activity for methane total oxidation, substantiated by comprehensive DFT-calculated reaction pathways. Furthermore, employing six machine-learning algorithms, the structure-properties relationship is explored within ceria-based DACs and highlight the importance of oxidation states and atomic radii of doped metals as the descriptors. The trained model by computational dataset exhibits high accuracy and predict a more active Mn1Au1/CeO2 than those screened using only DFT datasets. The high-throughput strategy demonstrated in this work not only provides insights into the rational design of methane oxidation catalysts, but also paves the way for exploring DACs for diverse applications.
{"title":"High-Throughput Screening of Dual-Atom Catalysts for Methane Combustion: A Combined Density Functional Theory and Machine-Learning Study","authors":"Jiaqi Ding, Haonan Gu, Yao Shi, Yi He, Yaqiong Su, Mi Yan, Pengfei Xie","doi":"10.1002/adfm.202414145","DOIUrl":"https://doi.org/10.1002/adfm.202414145","url":null,"abstract":"Ceria-supported precious metal catalysts have undergone extensive investigation for the catalytic methane combustion. However, it remains a significant challenge to achieve both highly synergistic oxidation activity and efficient atom utilization remains a challenge for commonly used supported nanoparticles and single-atom catalysts. Dual-atom catalysts (DACs) emerges as a frontier of advanced catalysts, presenting unique catalytic properties that benefit from the synergy of neighboring metal sites. In this study, 361 ceria-supported DACs (M<sub>1</sub>M<sub>2</sub>/CeO<sub>2</sub>) encompassing combinations of 19 transition metals are systematically explored. Using high-throughput density functional theory calculations, the structures, stability as well as activity of M<sub>1</sub>M<sub>2</sub>/CeO<sub>2</sub> are assessed. Notably, Au<sub>1</sub>Ga<sub>1</sub>/CeO<sub>2</sub> is identified as a promising DAC exhibiting high activity for methane total oxidation, substantiated by comprehensive DFT-calculated reaction pathways. Furthermore, employing six machine-learning algorithms, the structure-properties relationship is explored within ceria-based DACs and highlight the importance of oxidation states and atomic radii of doped metals as the descriptors. The trained model by computational dataset exhibits high accuracy and predict a more active Mn<sub>1</sub>Au<sub>1</sub>/CeO<sub>2</sub> than those screened using only DFT datasets. The high-throughput strategy demonstrated in this work not only provides insights into the rational design of methane oxidation catalysts, but also paves the way for exploring DACs for diverse applications.","PeriodicalId":18,"journal":{"name":"ACS Macro Letters","volume":"18 1","pages":""},"PeriodicalIF":19.0,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142601988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}