Structure optimization and performance evaluation of CS CICC jacket based on N50H austenitic steel for future fusion reactor

IF 1.8 3区 工程技术 Q3 PHYSICS, APPLIED Cryogenics Pub Date : 2024-04-01 DOI:10.1016/j.cryogenics.2024.103836
Weijun Wang , Yongsheng Wu , Jing Jin , Jinhao Shi , Huan Jin , Changjun Wang , Yu Liu , Chuanjun Huang , Laifeng Li , Jinggang Qin
{"title":"Structure optimization and performance evaluation of CS CICC jacket based on N50H austenitic steel for future fusion reactor","authors":"Weijun Wang ,&nbsp;Yongsheng Wu ,&nbsp;Jing Jin ,&nbsp;Jinhao Shi ,&nbsp;Huan Jin ,&nbsp;Changjun Wang ,&nbsp;Yu Liu ,&nbsp;Chuanjun Huang ,&nbsp;Laifeng Li ,&nbsp;Jinggang Qin","doi":"10.1016/j.cryogenics.2024.103836","DOIUrl":null,"url":null,"abstract":"<div><p>Fusion magnets are mainly wound by Cable In Conduit Conductor (CICC), therefore the cables can resist electromagnetic force under the protection of stainless steel jacket with higher yield strength. The Institute of Plasma Physics Chinese Academy of Sciences (ASIPP) has been designing a compact fusion device. As a structural component of CICC, the conductor jacket in Central Solenoid (CS) magnet withstands great electromagnetic force. Consequently, a higher strength stainless steel named modified Nitronic 50 (N50H) with Yield Strength (YS) &gt; 1500 MPa @ 4.2 K is adopted to fabricate CS jacket. In this paper, the compressing process of CS conductors with the circle in square structure is simulated by finite element method. The results reveal stress concentration on the jacket after compression, and with the increase of the jacket’ corner radius, the compressing stress decreases, while the electromagnetic stress increases. Through the analysis, the suitable corner radius of the jacket is selected. Subsequently, the corresponding jacket is manufactured, and the tensile test is carried out at 300 K, 77 K and 4.2 K. The results show the existence of stress concentration and prove that the jacket achieves YS &gt; 1500 MPa @ 4.2 K performance and meets the design requirements.</p></div>","PeriodicalId":10812,"journal":{"name":"Cryogenics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryogenics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011227524000560","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Fusion magnets are mainly wound by Cable In Conduit Conductor (CICC), therefore the cables can resist electromagnetic force under the protection of stainless steel jacket with higher yield strength. The Institute of Plasma Physics Chinese Academy of Sciences (ASIPP) has been designing a compact fusion device. As a structural component of CICC, the conductor jacket in Central Solenoid (CS) magnet withstands great electromagnetic force. Consequently, a higher strength stainless steel named modified Nitronic 50 (N50H) with Yield Strength (YS) > 1500 MPa @ 4.2 K is adopted to fabricate CS jacket. In this paper, the compressing process of CS conductors with the circle in square structure is simulated by finite element method. The results reveal stress concentration on the jacket after compression, and with the increase of the jacket’ corner radius, the compressing stress decreases, while the electromagnetic stress increases. Through the analysis, the suitable corner radius of the jacket is selected. Subsequently, the corresponding jacket is manufactured, and the tensile test is carried out at 300 K, 77 K and 4.2 K. The results show the existence of stress concentration and prove that the jacket achieves YS > 1500 MPa @ 4.2 K performance and meets the design requirements.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 N50H 奥氏体钢的 CS CICC 套管结构优化与性能评估,用于未来聚变反应堆
聚变磁体主要由电缆导体(CICC)缠绕,因此电缆在屈服强度较高的不锈钢护套保护下可以抵抗电磁力。中国科学院等离子体物理研究所(ASIPP)一直在设计一种紧凑型聚变装置。作为 CICC 的结构部件,中央电磁线圈(CS)磁体中的导体护套需要承受巨大的电磁力。因此,我们采用了一种强度更高的不锈钢(名为改良硝基 50(N50H),屈服强度(YS)为 1500 MPa @ 4.2 K)来制造 CS 护套。本文采用有限元法模拟了方形结构中圆形希尔思导体的压缩过程。结果表明,压缩后护套上应力集中,随着护套角半径的增大,压缩应力减小,而电磁应力增大。通过分析,选择了合适的夹套角半径。结果表明存在应力集中,证明夹套达到了 YS > 1500 MPa @ 4.2 K 的性能,符合设计要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cryogenics
Cryogenics 物理-热力学
CiteScore
3.80
自引率
9.50%
发文量
0
审稿时长
2.1 months
期刊介绍: Cryogenics is the world''s leading journal focusing on all aspects of cryoengineering and cryogenics. Papers published in Cryogenics cover a wide variety of subjects in low temperature engineering and research. Among the areas covered are: - Applications of superconductivity: magnets, electronics, devices - Superconductors and their properties - Properties of materials: metals, alloys, composites, polymers, insulations - New applications of cryogenic technology to processes, devices, machinery - Refrigeration and liquefaction technology - Thermodynamics - Fluid properties and fluid mechanics - Heat transfer - Thermometry and measurement science - Cryogenics in medicine - Cryoelectronics
期刊最新文献
Cryogenic thermosiphon used for indirect cooling of superconducting magnets Progress in measuring techniques and thermal radiative properties of metals at cryogenic temperatures: A review Delamination analysis of the epoxy impregnated REBCO racetrack coil under thermal stress based on a 3D model Enhancing dynamic stability of HTS maglev systems with preloading method Diffusive solubility of nitrogen in Propane: Measurement from 96 K to 227 K at 0.1 MPa
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1