{"title":"Bayesian reinforcement learning: A basic overview","authors":"Pyungwon Kang , Philippe N. Tobler , Peter Dayan","doi":"10.1016/j.nlm.2024.107924","DOIUrl":null,"url":null,"abstract":"<div><p>We and other animals learn because there is some aspect of the world about which we are uncertain. This uncertainty arises from initial ignorance, and from changes in the world that we do not perfectly know; the uncertainty often becomes evident when our predictions about the world are found to be erroneous. The Rescorla-Wagner learning rule, which specifies one way that prediction errors can occasion learning, has been hugely influential as a characterization of Pavlovian conditioning and, through its equivalence to the delta rule in engineering, in a much wider class of learning problems. Here, we review the embedding of the Rescorla-Wagner rule in a Bayesian context that is precise about the link between uncertainty and learning, and thereby discuss extensions to such suggestions as the Kalman filter, structure learning, and beyond, that collectively encompass a wider range of uncertainties and accommodate a wider assortment of phenomena in conditioning.</p></div>","PeriodicalId":19102,"journal":{"name":"Neurobiology of Learning and Memory","volume":"211 ","pages":"Article 107924"},"PeriodicalIF":2.2000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1074742724000352/pdfft?md5=5ca8290df73782a10358c32eb9ad1868&pid=1-s2.0-S1074742724000352-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Learning and Memory","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1074742724000352","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
We and other animals learn because there is some aspect of the world about which we are uncertain. This uncertainty arises from initial ignorance, and from changes in the world that we do not perfectly know; the uncertainty often becomes evident when our predictions about the world are found to be erroneous. The Rescorla-Wagner learning rule, which specifies one way that prediction errors can occasion learning, has been hugely influential as a characterization of Pavlovian conditioning and, through its equivalence to the delta rule in engineering, in a much wider class of learning problems. Here, we review the embedding of the Rescorla-Wagner rule in a Bayesian context that is precise about the link between uncertainty and learning, and thereby discuss extensions to such suggestions as the Kalman filter, structure learning, and beyond, that collectively encompass a wider range of uncertainties and accommodate a wider assortment of phenomena in conditioning.
期刊介绍:
Neurobiology of Learning and Memory publishes articles examining the neurobiological mechanisms underlying learning and memory at all levels of analysis ranging from molecular biology to synaptic and neural plasticity and behavior. We are especially interested in manuscripts that examine the neural circuits and molecular mechanisms underlying learning, memory and plasticity in both experimental animals and human subjects.