Pub Date : 2024-10-31DOI: 10.1016/j.nlm.2024.108004
Victoria R Heimer-McGinn, Taylor Wise, Emma R Halter, Dominique Martin, Victoria L Templer
The human posterior parietal cortex (PPC) is known to support sustained attention. Specifically, top-down attention is generally processed in dorsal regions while bottom-up regulation occurs more ventrally. In rodent models, however, it is still unclear whether the PPC is required for sustained attention, or whether there is a similar functional dissociation between anatomical regions. Consequently, the aim of this study was to investigate the contribution of the rodent dorsal PPC (dPPC) in sustained attention. We used the five-choice serial reaction time task (5CSRTT) and compared rats with neurotoxic dPPC lesions to sham operated rats. We found that rats with dPPC lesions were less accurate and took longer to make correct choices, indicating impaired attention and reduced processing speed. This effect, however, was limited to the first few days of post-operative testing. After an apparent recovery, omissions became elevated in the lesion group, which, in the absence of reduced motivation and mobility, can also be interpreted as impaired attention. In subsequent challenge probes, the lesion group displayed globally elevated latency to make a correct response, indicating reduced processing speed. No differences in premature responses or perseverative responses were observed at any time, demonstrating that dPPC lesions did not affect impulsivity and compulsivity. This pattern of behavior suggests that while intact dPPC supports goal-driven (top-down) modulation of attention, it likely does not play a central role in processing stimulus-driven (bottom-up) attention. Furthermore, compensatory mechanisms can support sustained attention in the absence of a fully functioning dPPC, although this occurs at the expense of processing speed. Our results inform the literature by confirming that rodent PPC is involved in regulating sustained attention and providing preliminary evidence for a functional dissociation between top-down and bottom-up attentional processing.
{"title":"Attentional processing in the rat dorsal posterior parietal cortex.","authors":"Victoria R Heimer-McGinn, Taylor Wise, Emma R Halter, Dominique Martin, Victoria L Templer","doi":"10.1016/j.nlm.2024.108004","DOIUrl":"10.1016/j.nlm.2024.108004","url":null,"abstract":"<p><p>The human posterior parietal cortex (PPC) is known to support sustained attention. Specifically, top-down attention is generally processed in dorsal regions while bottom-up regulation occurs more ventrally. In rodent models, however, it is still unclear whether the PPC is required for sustained attention, or whether there is a similar functional dissociation between anatomical regions. Consequently, the aim of this study was to investigate the contribution of the rodent dorsal PPC (dPPC) in sustained attention. We used the five-choice serial reaction time task (5CSRTT) and compared rats with neurotoxic dPPC lesions to sham operated rats. We found that rats with dPPC lesions were less accurate and took longer to make correct choices, indicating impaired attention and reduced processing speed. This effect, however, was limited to the first few days of post-operative testing. After an apparent recovery, omissions became elevated in the lesion group, which, in the absence of reduced motivation and mobility, can also be interpreted as impaired attention. In subsequent challenge probes, the lesion group displayed globally elevated latency to make a correct response, indicating reduced processing speed. No differences in premature responses or perseverative responses were observed at any time, demonstrating that dPPC lesions did not affect impulsivity and compulsivity. This pattern of behavior suggests that while intact dPPC supports goal-driven (top-down) modulation of attention, it likely does not play a central role in processing stimulus-driven (bottom-up) attention. Furthermore, compensatory mechanisms can support sustained attention in the absence of a fully functioning dPPC, although this occurs at the expense of processing speed. Our results inform the literature by confirming that rodent PPC is involved in regulating sustained attention and providing preliminary evidence for a functional dissociation between top-down and bottom-up attentional processing.</p>","PeriodicalId":19102,"journal":{"name":"Neurobiology of Learning and Memory","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142564803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-30DOI: 10.1016/j.nlm.2024.108003
Yvonne Y. Chen , Kathryn J.M. Lambert , Christopher R. Madan , Anthony Singhal
Certain object properties may render an item as more memorable than others. One such property is manipulability, or the extent to which an object can be interacted with using our hands. This study sought to determine if the manipulability of an item modulates memory task performance on both a behavioural and neural level. We recorded electroencephalography (EEG) from a large sample of right-handed individuals (N = 53) during a visual item recognition memory task. The task contained stimuli of both high and low manipulability. Analysis focused on activity in the theta rhythm (3.5–7 Hz), which has been implicated in sensorimotor integration, and the mu rhythm (8–14 Hz), the primary oscillation associated with sensorimotor related behaviours. At both encoding and retrieval, theta oscillations were greater over the left motor region for high manipulability stimuli, suggesting that an item’s sensorimotor properties are assessed immediately upon presentation. Manipulability did not affect activity in the mu rhythm. However, mu oscillations over the left motor region were lower during the retrieval of old versus new items and response time was faster for old items, aligning with the cortical reinstatement hypothesis. These results collectively reveal an association between motor oscillations and memory processes, highlight the involvement of sensorimotor processing at both encoding and retrieval.
{"title":"Motor-related oscillations reveal the involvement of sensorimotor processes during recognition memory","authors":"Yvonne Y. Chen , Kathryn J.M. Lambert , Christopher R. Madan , Anthony Singhal","doi":"10.1016/j.nlm.2024.108003","DOIUrl":"10.1016/j.nlm.2024.108003","url":null,"abstract":"<div><div>Certain object properties may render an item as more memorable than others. One such property is manipulability, or the extent to which an object can be interacted with using our hands. This study sought to determine if the manipulability of an item modulates memory task performance on both a behavioural and neural level. We recorded electroencephalography (EEG) from a large sample of right-handed individuals (N = 53) during a visual item recognition memory task. The task contained stimuli of both high and low manipulability. Analysis focused on activity in the theta rhythm (3.5–7 Hz), which has been implicated in sensorimotor integration, and the mu rhythm (8–14 Hz), the primary oscillation associated with sensorimotor related behaviours. At both encoding and retrieval, theta oscillations were greater over the left motor region for high manipulability stimuli, suggesting that an item’s sensorimotor properties are assessed immediately upon presentation. Manipulability did not affect activity in the mu rhythm. However, mu oscillations over the left motor region were lower during the retrieval of old versus new items and response time was faster for old items, aligning with the cortical reinstatement hypothesis. These results collectively reveal an association between motor oscillations and memory processes, highlight the involvement of sensorimotor processing at both encoding and retrieval.</div></div>","PeriodicalId":19102,"journal":{"name":"Neurobiology of Learning and Memory","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142558324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-20DOI: 10.1016/j.nlm.2024.107995
Laura García-Rueda , Claudia Poch , Pablo Campo
Memory retrieval has been extensively studied in relation to the encoding processes that precede access to stored information. Event related potentials (ERP) research has compared brain potentials elicited during the study phase of successful and unsuccessful retrieval, finding greater activation for the subsequent retrieval information. In this work we were interested in exploring the neural markers associated to subsequent recognition when similar memories are subsequently encoded. We used a Subsequent Memory paradigm in which we manipulated the number of similar items within a category (2 or 6) that participants encoded. Manipulating the number of similar encoded items within a category allowed us to test whether encoding markers of subsequent recognition depend solely on memory trace strength or, on the contrary, successful recognition is influenced by subsequently presented similar memories, and consequently may not be reflected in higher activation in such cases. After a 20-minute period, participants performed a recognition task providing one of a three-option judgement: “old”, “similar” and “new”, which allowed us to test if the amplitude of ERP waveforms varied based on the similarity judgement of the unrecognized encoded item. We did not observe a significant parietal subsequent memory effect, however, old hits and similar false alarms were both significantly different from similar correct rejections and old false alarms in ERP retrieval. These findings suggest that differences in brain responses between conditions are specifically related to the retrieval process and not the encoding process, indicating potential differential effects on memory during retrieval. Moreover, it is also possible that differences in brain responses develop or change over the rest time between phases, influencing how these conditions manifest across different stages of information processing.
{"title":"Pattern separation during encoding and Subsequent Memory Effect","authors":"Laura García-Rueda , Claudia Poch , Pablo Campo","doi":"10.1016/j.nlm.2024.107995","DOIUrl":"10.1016/j.nlm.2024.107995","url":null,"abstract":"<div><div>Memory retrieval has been extensively studied in relation to the encoding processes that precede access to stored information. Event related potentials (ERP) research has compared brain potentials elicited during the study phase of successful and unsuccessful retrieval, finding greater activation for the subsequent retrieval information. In this work we were interested in exploring the neural markers associated to subsequent recognition when similar memories are subsequently encoded. We used a Subsequent Memory paradigm in which we manipulated the number of similar items within a category (2 or 6) that participants encoded. Manipulating the number of similar encoded items within a category allowed us to test whether encoding markers of subsequent recognition depend solely on memory trace strength or, on the contrary, successful recognition is influenced by subsequently presented similar memories, and consequently may not be reflected in higher activation in such cases. After a 20-minute period, participants performed a recognition task providing one of a three-option judgement: “old”, “similar” and “new”, which allowed us to test if the amplitude of ERP waveforms varied based on the similarity judgement of the unrecognized encoded item. We did not observe a significant parietal subsequent memory effect, however, old hits and similar false alarms were both significantly different from similar correct rejections and old false alarms in ERP retrieval. These findings suggest that differences in brain responses between conditions are specifically related to the retrieval process and not the encoding process, indicating potential differential effects on memory during retrieval. Moreover, it is also possible that differences in brain responses develop or change over the rest time between phases, influencing how these conditions manifest across different stages of information processing.</div></div>","PeriodicalId":19102,"journal":{"name":"Neurobiology of Learning and Memory","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-18DOI: 10.1016/j.nlm.2024.107994
Elizabeth A. Bauer , Patrick A.F. Laing , Samuel E. Cooper , Josh M. Cisler , Joseph E. Dunsmoor
Several leading therapies for anxiety-related disorders rely on the principles of extinction learning. However, despite decades of development and research, many of these treatments remain only moderately effective. Developing techniques to improve extinction learning is an important step towards developing improved and mechanistically-informed exposure-based therapies. In this review, we highlight human research on strategies that might augment extinction learning through reward neurocircuitry and dopaminergic pathways, with an emphasis on counterconditioning and other behaviorally-augmented forms of extinction learning (e.g., novelty-facilitated extinction, positive affect training). We also highlight emerging pharmacological and non-pharmacological methods of augmenting extinction, including L-DOPA and aerobic exercise. Finally, we discuss future directions for augmented extinction learning and memory research, including the need for more work examining the influence of individual differences and psychopathology.
{"title":"Out with the bad, in with the good: A review on augmented extinction learning in humans","authors":"Elizabeth A. Bauer , Patrick A.F. Laing , Samuel E. Cooper , Josh M. Cisler , Joseph E. Dunsmoor","doi":"10.1016/j.nlm.2024.107994","DOIUrl":"10.1016/j.nlm.2024.107994","url":null,"abstract":"<div><div>Several leading therapies for anxiety-related disorders rely on the principles of extinction learning. However, despite decades of development and research, many of these treatments remain only moderately effective. Developing techniques to improve extinction learning is an important step towards developing improved and mechanistically-informed exposure-based therapies. In this review, we highlight human research on strategies that might augment extinction learning through reward neurocircuitry and dopaminergic pathways, with an emphasis on counterconditioning and other behaviorally-augmented forms of extinction learning (e.g., novelty-facilitated extinction, positive affect training). We also highlight emerging pharmacological and non-pharmacological methods of augmenting extinction, including L-DOPA and aerobic exercise. Finally, we discuss future directions for augmented extinction learning and memory research, including the need for more work examining the influence of individual differences and psychopathology.</div></div>","PeriodicalId":19102,"journal":{"name":"Neurobiology of Learning and Memory","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-16DOI: 10.1016/j.nlm.2024.107993
Chaery Lee , Bong-Kiun Kaang
Studies on memory engram have demonstrated how experience and learning can be allocated at a neuronal level for centuries. Recently emerging evidence narrowed down further to the synaptic connections and their patterned allocation on dendrites. Notably, groups of synapses within a specific range within dendrites known as ’synaptic clusters’ have been revealed in association with learning and memory. Previous investigations have shown that a variety of factors mediated by both presynaptic inputs and postsynaptic dendrites contribute to clustering. Here, we review the neural mechanism of synaptic clustering and its correlation with memory. We highlight the recent findings about the clustering of synaptic engrams and memory formation and discuss future directions.
{"title":"Clustering of synaptic engram: Functional and structural basis of memory","authors":"Chaery Lee , Bong-Kiun Kaang","doi":"10.1016/j.nlm.2024.107993","DOIUrl":"10.1016/j.nlm.2024.107993","url":null,"abstract":"<div><div>Studies on memory engram have demonstrated how experience and learning can be allocated at a neuronal level for centuries. Recently emerging evidence narrowed down further to the synaptic connections and their patterned allocation on dendrites. Notably, groups of synapses within a specific range within dendrites known as ’synaptic clusters’ have been revealed in association with learning and memory. Previous investigations have shown that a variety of factors mediated by both presynaptic inputs and postsynaptic dendrites contribute to clustering. Here, we review the neural mechanism of synaptic clustering and its correlation with memory. We highlight the recent findings about the clustering of synaptic engrams and memory formation and discuss future directions.</div></div>","PeriodicalId":19102,"journal":{"name":"Neurobiology of Learning and Memory","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-15DOI: 10.1016/j.nlm.2024.107991
Yu-Rui Liu , Chun-hui Chang
In laboratories, classical fear conditioning and extinction procedures are commonly used to study the behavioral and neural mechanisms underlying fear regulation. Contextual fear conditioning involves the association of an aversive event with the environment where it occurs, which engages the hippocampus and its interactions with the amygdala. The orbitofrontal cortex (OFC), divided into the lateral OFC (lOFC) and medial OFC (mOFC) subregions, plays a crucial role in integrating contextual information from the hippocampus and modulating behavioral responses based on the anticipated outcomes of the context. Because of the extensive anatomical connections of the OFC with the fear circuit, including the hippocampus, the amygdala, and the medial prefrontal cortex, and the reasoning that proper retrieval of fear-related memory is context-dependent, we raised the question to investigate the ability of the animals to discriminate between contexts when they were trained under differential OFC activation levels during the encoding of contextual fear memory. In this study, we conducted a contextual fear conditioning procedure in rats using footshock as an unconditioned stimulus (US), followed by the test of their fear levels in contexts same (dangerous) or different (safe) from the conditioning context. We used a pharmacological approach to modulate the activation levels of the lOFC or the mOFC during conditioning to examine their roles on context-specific fear encoding. Our findings showed that the animals could accurately distinguish between the two contexts in control and OFC hypoactivation groups, but failed to do so if they were trained under OFC hyperactivation. Therefore, OFC hyperactivity disturbed the encoding of contextual information during fear acquisition.
{"title":"Activation, but not inactivation, of the medial or lateral orbitofrontal cortex impaired context-specific fear encoding","authors":"Yu-Rui Liu , Chun-hui Chang","doi":"10.1016/j.nlm.2024.107991","DOIUrl":"10.1016/j.nlm.2024.107991","url":null,"abstract":"<div><div>In laboratories, classical fear conditioning and extinction procedures are commonly used to study the behavioral and neural mechanisms underlying fear regulation. Contextual fear conditioning involves the association of an aversive event with the environment where it occurs, which engages the hippocampus and its interactions with the amygdala. The orbitofrontal cortex (OFC), divided into the lateral OFC (lOFC) and medial OFC (mOFC) subregions, plays a crucial role in integrating contextual information from the hippocampus and modulating behavioral responses based on the anticipated outcomes of the context. Because of the extensive anatomical connections of the OFC with the fear circuit, including the hippocampus, the amygdala, and the medial prefrontal cortex, and the reasoning that proper retrieval of fear-related memory is context-dependent, we raised the question to investigate the ability of the animals to discriminate between contexts when they were trained under differential OFC activation levels during the encoding of contextual fear memory. In this study, we conducted a contextual fear conditioning procedure in rats using footshock as an unconditioned stimulus (US), followed by the test of their fear levels in contexts same (dangerous) or different (safe) from the conditioning context. We used a pharmacological approach to modulate the activation levels of the lOFC or the mOFC during conditioning to examine their roles on context-specific fear encoding. Our findings showed that the animals could accurately distinguish between the two contexts in control and OFC hypoactivation groups, but failed to do so if they were trained under OFC hyperactivation. Therefore, OFC hyperactivity disturbed the encoding of contextual information during fear acquisition.</div></div>","PeriodicalId":19102,"journal":{"name":"Neurobiology of Learning and Memory","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-14DOI: 10.1016/j.nlm.2024.107992
Yury Shtyrov, Ekaterina Perikova, Margarita Filippova, Alexander Kirsanov, Evgeny Blagovechtchenski, Olga Shcherbakova
Transcranial direct current stimulation (tDCS) is a non-invasive neuromodulation technique that can alter the state of the stimulated brain area and thereby affect neurocognitive processes and resulting behavioural performance. Previous studies have shown disparate results with respect to tDCS effects on language function, particularly with respect to language learning and word acquisition. To fill this gap, this study aimed at systematically addressing the effects of tDCS of core left-hemispheric language cortices on the brain mechanisms underpinning two main neurocognitive strategies of word learning: implicit inference-based Fast Mapping (FM) and direct instruction-based Explicit Encoding (EE). Prior to a word-learning session, 160 healthy participants were given 15 min of either anodal or cathodal tDCS of Wernicke's or Broca's areas, or a control sham (placebo) stimulation, using a between-group design. Each participant then learned 16 novel words (8 through FM and 8 through EE) in a contextual word-picture association session. Moreover, these words were learnt either perceptually via auditory exposure combined with a graphical image of the novel object, or in an articulatory mode, where the participants additionally had to overtly articulate the novel items. These learning conditions were fully counterbalanced across participants, stimuli and tDCS groups. Learning outcomes were tested at both lexical and semantic levels using two tasks: recognition and word-picture matching. EE and FM conditions produced similar outcomes, indicating comparable efficiency of the respective learning strategies. At the same time, articulatory learning produced generally better results than non-articulatory exposure, yielding higher recognition accuracies and shorter latencies in both tasks. Crucially, real tDCS led to global outcome improvements, demonstrated by faster (compared to sham) reactions, as well as some accuracy changes. There was also evidence of more specific tDCS effects: better word-recognition accuracy for EE vs. FM following cathodal stimulation as well as more expressed improvements in recognition accuracy and reaction times for anodal Broca's and cathodal Wernicke's stimulation, particularly for unarticulated FM items. These learning mode-specific effects support the notion of partially distinct brain mechanisms underpinning these two learning strategies. Overall, numerically largest improvements were observed for anodal Broca's tDCS, whereas the least expressed benefits of tDCS for learning were measured after anodal Wernicke stimulation. Finally, we did not find any inhibitory effects of either tDCS polarity in any of the comparisons. We conclude that tDCS of core language areas exerts a general facilitatory effect on new word acquisition with some limited specificity to learning protocols - the result that may be of potential applied value for future research aimed at ameliorating learning deficits and language disorders.
{"title":"Transcranial direct-current stimulation of core language areas facilitates novel word acquisition.","authors":"Yury Shtyrov, Ekaterina Perikova, Margarita Filippova, Alexander Kirsanov, Evgeny Blagovechtchenski, Olga Shcherbakova","doi":"10.1016/j.nlm.2024.107992","DOIUrl":"https://doi.org/10.1016/j.nlm.2024.107992","url":null,"abstract":"<p><p>Transcranial direct current stimulation (tDCS) is a non-invasive neuromodulation technique that can alter the state of the stimulated brain area and thereby affect neurocognitive processes and resulting behavioural performance. Previous studies have shown disparate results with respect to tDCS effects on language function, particularly with respect to language learning and word acquisition. To fill this gap, this study aimed at systematically addressing the effects of tDCS of core left-hemispheric language cortices on the brain mechanisms underpinning two main neurocognitive strategies of word learning: implicit inference-based Fast Mapping (FM) and direct instruction-based Explicit Encoding (EE). Prior to a word-learning session, 160 healthy participants were given 15 min of either anodal or cathodal tDCS of Wernicke's or Broca's areas, or a control sham (placebo) stimulation, using a between-group design. Each participant then learned 16 novel words (8 through FM and 8 through EE) in a contextual word-picture association session. Moreover, these words were learnt either perceptually via auditory exposure combined with a graphical image of the novel object, or in an articulatory mode, where the participants additionally had to overtly articulate the novel items. These learning conditions were fully counterbalanced across participants, stimuli and tDCS groups. Learning outcomes were tested at both lexical and semantic levels using two tasks: recognition and word-picture matching. EE and FM conditions produced similar outcomes, indicating comparable efficiency of the respective learning strategies. At the same time, articulatory learning produced generally better results than non-articulatory exposure, yielding higher recognition accuracies and shorter latencies in both tasks. Crucially, real tDCS led to global outcome improvements, demonstrated by faster (compared to sham) reactions, as well as some accuracy changes. There was also evidence of more specific tDCS effects: better word-recognition accuracy for EE vs. FM following cathodal stimulation as well as more expressed improvements in recognition accuracy and reaction times for anodal Broca's and cathodal Wernicke's stimulation, particularly for unarticulated FM items. These learning mode-specific effects support the notion of partially distinct brain mechanisms underpinning these two learning strategies. Overall, numerically largest improvements were observed for anodal Broca's tDCS, whereas the least expressed benefits of tDCS for learning were measured after anodal Wernicke stimulation. Finally, we did not find any inhibitory effects of either tDCS polarity in any of the comparisons. We conclude that tDCS of core language areas exerts a general facilitatory effect on new word acquisition with some limited specificity to learning protocols - the result that may be of potential applied value for future research aimed at ameliorating learning deficits and language disorders.</p>","PeriodicalId":19102,"journal":{"name":"Neurobiology of Learning and Memory","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-12DOI: 10.1016/j.nlm.2024.107990
Salome Dargam, Soledad de Olmos, Ricardo Marcos Pautassi, Alfredo Lorenzo
The retrosplenial cortex (RSC) plays a critical role in complex cognitive functions such as contextual fear memory formation and consolidation. Perineuronal nets (PNNs) are specialized structures of the extracellular matrix that modulate synaptic plasticity by enwrapping the soma, proximal neurites and synapsis mainly on fast spiking inhibitory GABAergic interneurons that express parvalbumin (PV). PNNs change after contextual fear conditioning (CFC) in amygdala or hippocampus, yet it is unknown if similar remodeling takes place at RSC. Here, we used Wisteria floribunda agglutinin (WFA), a ubiquitous marker of PNNs, to study the remodeling of PNNs in RSC during the acquisition or retrieval of contextual fear conditioning (CFC). Adult male mice were exposed to paired presentations of a context and footshock, or to either of these stimuli alone (control groups). The mere exposure of animals to the footshock, either alone or paired with the context, evoked a significant expansion of PNNs, both in the number of WFA positive neurons and in the area occupied by WFA staining, across the entire RSC. This was not associated with c-Fos expression in RSC nor correlated with c-Fos expression in individual PNNs-expressing neurons in RSC, suggesting that PNNs remodeling is triggered by inputs external to the RSC. We also found that PNNs remodeling was independent of the level of PV expression. Notably, PNNs in RSC remained expanded long-after CFC. These results suggest that, in male mice, the threatening experience is the main cause of PNNs remodeling in the RSC.
{"title":"Footshock drives remodeling of perineuronal nets in retrosplenial cortex during contextual fear memory formation","authors":"Salome Dargam, Soledad de Olmos, Ricardo Marcos Pautassi, Alfredo Lorenzo","doi":"10.1016/j.nlm.2024.107990","DOIUrl":"10.1016/j.nlm.2024.107990","url":null,"abstract":"<div><div>The retrosplenial cortex (RSC) plays a critical role in complex cognitive functions such as contextual fear memory formation and consolidation. Perineuronal nets (PNNs) are specialized structures of the extracellular matrix that modulate synaptic plasticity by enwrapping the soma, proximal neurites and synapsis mainly on fast spiking inhibitory GABAergic interneurons that express parvalbumin (PV). PNNs change after contextual fear conditioning (CFC) in amygdala or hippocampus, yet it is unknown if similar remodeling takes place at RSC. Here, we used Wisteria floribunda agglutinin (WFA), a ubiquitous marker of PNNs, to study the remodeling of PNNs in RSC during the acquisition or retrieval of contextual fear conditioning (CFC). Adult male mice were exposed to paired presentations of a context and footshock, or to either of these stimuli alone (control groups). The mere exposure of animals to the footshock, either alone or paired with the context, evoked a significant expansion of PNNs, both in the number of WFA positive neurons and in the area occupied by WFA staining, across the entire RSC. This was not associated with c-Fos expression in RSC nor correlated with c-Fos expression in individual PNNs-expressing neurons in RSC, suggesting that PNNs remodeling is triggered by inputs external to the RSC. We also found that PNNs remodeling was independent of the level of PV expression. Notably, PNNs in RSC remained expanded long-after CFC. These results suggest that, in male mice, the threatening experience is the main cause of PNNs remodeling in the RSC.</div></div>","PeriodicalId":19102,"journal":{"name":"Neurobiology of Learning and Memory","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142440964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-05DOI: 10.1016/j.nlm.2024.107988
Bess Glickman , Krista L. Wahlstrom , Jason J. Radley , Ryan T. LaLumiere
The basolateral amygdala (BLA) modulates different types of memory consolidation via distinct projections to downstream brain regions in multiple memory systems. Prior studies indicate that the BLA projects to the nucleus accumbens shell (NAshell) and that these regions interact to influence some types of behavior. Moreover, previous pharmacological work suggests the BLA and NAshell interact to influence memory. However, the precise role of the BLA-NAshell pathway has never been directly investigated in the consolidation of different types of memory including cued-response, spatial, or inhibitory avoidance (IA) learning. To address this, male and female Sprague-Dawley rats received optogenetic manipulations of the BLA or BLA-NAshell pathway immediately following training in different learning tasks. An initial experiment found that optogenetically inhibiting the BLA itself immediately after training impaired cued-response retention in a Barnes maze task in males and females, confirming earlier pharmacological work in males alone. Subsequent experiments found that BLA-NAshell pathway inhibition impaired retention of cued-response and IA learning but had no effect on retention of spatial learning. However, the present work did not observe any effects of pathway stimulation immediately after cued-response or IA learning. Together, the present findings suggest the BLA modulates the consolidation of cued-response and IA, but not spatial, memory consolidation via NAshell projections.
杏仁基底外侧(BLA)通过向多个记忆系统的下游脑区的不同投射来调节不同类型的记忆巩固。先前的研究表明,杏仁基底外侧体(BLA)投射至脑核外壳(NAshell),这些区域相互作用,影响某些类型的行为。此外,之前的药理学研究也表明,BLA 和 NAshell 相互影响记忆。然而,BLA-NAshell通路在不同类型记忆(包括线索反应、空间或抑制性回避(IA)学习)的巩固过程中的确切作用还从未被直接研究过。为了解决这个问题,雌雄Sprague-Dawley大鼠在不同的学习任务训练后立即接受了BLA或BLA-NAshell通路的光遗传学操作。最初的实验发现,在雄性和雌性大鼠的巴恩斯迷宫任务中,训练后立即对BLA本身进行光遗传学抑制会影响其线索反应的保持,这证实了之前仅在雄性大鼠中进行的药理学研究。随后的实验发现,BLA-NAshell通路抑制会损害提示反应和IA学习的保持,但对空间学习的保持没有影响。然而,本研究并未观察到在提示反应或 IA 学习后立即刺激通路会产生任何影响。总之,本研究结果表明,BLA 通过 NAshell 投射调节提示反应和 IA 记忆的巩固,而不是空间记忆的巩固。
{"title":"Basolateral amygdala inputs to the nucleus accumbens shell modulate the consolidation of cued-response and inhibitory avoidance learning","authors":"Bess Glickman , Krista L. Wahlstrom , Jason J. Radley , Ryan T. LaLumiere","doi":"10.1016/j.nlm.2024.107988","DOIUrl":"10.1016/j.nlm.2024.107988","url":null,"abstract":"<div><div>The basolateral amygdala (BLA) modulates different types of memory consolidation via distinct projections to downstream brain regions in multiple memory systems. Prior studies indicate that the BLA projects to the nucleus accumbens shell (NAshell) and that these regions interact to influence some types of behavior. Moreover, previous pharmacological work suggests the BLA and NAshell interact to influence memory. However, the precise role of the BLA-NAshell pathway has never been directly investigated in the consolidation of different types of memory including cued-response, spatial, or inhibitory avoidance (IA) learning. To address this, male and female Sprague-Dawley rats received optogenetic manipulations of the BLA or BLA-NAshell pathway immediately following training in different learning tasks. An initial experiment found that optogenetically inhibiting the BLA itself immediately after training impaired cued-response retention in a Barnes maze task in males and females, confirming earlier pharmacological work in males alone. Subsequent experiments found that BLA-NAshell pathway inhibition impaired retention of cued-response and IA learning but had no effect on retention of spatial learning. However, the present work did not observe any effects of pathway stimulation immediately after cued-response or IA learning. Together, the present findings suggest the BLA modulates the consolidation of cued-response and IA, but not spatial, memory consolidation via NAshell projections.</div></div>","PeriodicalId":19102,"journal":{"name":"Neurobiology of Learning and Memory","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142381327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-05DOI: 10.1016/j.nlm.2024.107989
Thomas J. Burton, Alesha R. Kumar, Nura W. Lingawi, Joanne M. Gladding, Bernard W. Balleine, Vincent Laurent
A stimulus that predicts the delivery of a specific food outcome can bias performance towards instrumental actions that earn that same outcome in a phenomenon known as specific Pavlovian-instrumental transfer (PIT). The precise mechanism by which the specific instrumental action is selected under these circumstances has remained elusive. The present set of experiments explored whether treatments that undermine the response-outcome (R-O) association also affect the expression of specific PIT. Consistent with previous work, in Experiment 1 we showed that specific PIT remains intact after an instrumental degradation treatment that attempted to undermine R-O associations. However, we additionally demonstrated that outcome-devaluation sensitivity also persisted after degradation, suggesting that R-O associations were impervious to the degradation treatment, and precluding any conclusions about the necessity of R-O associations for specific PIT expression. Nevertheless, given the two-lever two-outcome design of this experiment it is possible that R-O associations were indeed undermined by degradation and that the devaluation effect was driven by distinct, incidental Pavlovian lever-outcome associations. To nullify the obscuring effects of these incidental Pavlovian associations, we used a bidirectional lever for instrumental conditioning that could be pushed to the left or the right for distinct outcomes. In Experiment 2 we demonstrated that specific PIT could be observed on this bidirectional manipulandum whether the subjects were hungry or sated, consistent with the literature. The critical third Experiment used an identical design to Experiment 1 except that the two instrumental responses were made on the single bidirectional manipulanda. Here, specific PIT was intact after instrumental degradation and, crucially, we saw no evidence of outcome devaluation sensitivity in these same subjects, suggesting that the R-O associations were weakened or undermined by this treatment. We conclude that the expression of specific PIT is resistant to treatments that undermine R-O associations and disrupt value based choice, and discuss how these findings contribute to our understanding of the associative framework supporting behavioral control.
{"title":"Response-independent outcome presentations dissociate stimulus and value based choice","authors":"Thomas J. Burton, Alesha R. Kumar, Nura W. Lingawi, Joanne M. Gladding, Bernard W. Balleine, Vincent Laurent","doi":"10.1016/j.nlm.2024.107989","DOIUrl":"10.1016/j.nlm.2024.107989","url":null,"abstract":"<div><div>A stimulus that predicts the delivery of a specific food outcome can bias performance towards instrumental actions that earn that same outcome in a phenomenon known as specific Pavlovian-instrumental transfer (PIT). The precise mechanism by which the specific instrumental action is selected under these circumstances has remained elusive. The present set of experiments explored whether treatments that undermine the response-outcome (R-O) association also affect the expression of specific PIT. Consistent with previous work, in Experiment 1 we showed that specific PIT remains intact after an instrumental degradation treatment that attempted to undermine R-O associations. However, we additionally demonstrated that outcome-devaluation sensitivity also persisted after degradation, suggesting that R-O associations were impervious to the degradation treatment, and precluding any conclusions about the necessity of R-O associations for specific PIT expression. Nevertheless, given the two-lever two-outcome design of this experiment it is possible that R-O associations were indeed undermined by degradation and that the devaluation effect was driven by distinct, incidental Pavlovian lever-outcome associations. To nullify the obscuring effects of these incidental Pavlovian associations, we used a bidirectional lever for instrumental conditioning that could be pushed to the left or the right for distinct outcomes. In Experiment 2 we demonstrated that specific PIT could be observed on this bidirectional manipulandum whether the subjects were hungry or sated, consistent with the literature. The critical third Experiment used an identical design to Experiment 1 except that the two instrumental responses were made on the single bidirectional manipulanda. Here, specific PIT was intact after instrumental degradation and, crucially, we saw no evidence of outcome devaluation sensitivity in these same subjects, suggesting that the R-O associations were weakened or undermined by this treatment. We conclude that the expression of specific PIT is resistant to treatments that undermine R-O associations and disrupt value based choice, and discuss how these findings contribute to our understanding of the associative framework supporting behavioral control.</div></div>","PeriodicalId":19102,"journal":{"name":"Neurobiology of Learning and Memory","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142381328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}