Branden Holmes , Janine M. Ziermann , Artur Strzelecki , Steffen Springer , Michael Zieger
{"title":"Who notices Gymnophiona? Google Trends data reveal interesting trends for recent amphibian species","authors":"Branden Holmes , Janine M. Ziermann , Artur Strzelecki , Steffen Springer , Michael Zieger","doi":"10.1016/j.ecocom.2024.101080","DOIUrl":null,"url":null,"abstract":"<div><p>Gymnophiona (caecilians) are inconspicuous, wormlike amphibians that are often hidden from human sight due to their aquatic or fossorial lifestyles. While Google Trends data have been widely used within conservation biology to provide information about the relative interest in species, and therefore of their flagship-making potential, as well as to identify current taxonomic biases. This study aimed to evaluate public interest in amphibians, with a particular focus on caecilians, and possible taxonomic biases of and within the class Amphibia. Google Trends data from amphibians, reptiles (sauropsids, excluding aves), and fishes (chondrichthyans + osteichthyans, excluding tetrapods) were analyzed and compared. In addition, a framework for a representation index and web representation index is presented. The introduced relative representation index was able to confirm taxonomic bias concerning Amphibia. Differences in worldwide public interest could also be evaluated within amphibians, indicating severe underrepresentation in public interest for caecilians.</p></div>","PeriodicalId":50559,"journal":{"name":"Ecological Complexity","volume":"58 ","pages":"Article 101080"},"PeriodicalIF":3.1000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Complexity","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476945X24000084","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Gymnophiona (caecilians) are inconspicuous, wormlike amphibians that are often hidden from human sight due to their aquatic or fossorial lifestyles. While Google Trends data have been widely used within conservation biology to provide information about the relative interest in species, and therefore of their flagship-making potential, as well as to identify current taxonomic biases. This study aimed to evaluate public interest in amphibians, with a particular focus on caecilians, and possible taxonomic biases of and within the class Amphibia. Google Trends data from amphibians, reptiles (sauropsids, excluding aves), and fishes (chondrichthyans + osteichthyans, excluding tetrapods) were analyzed and compared. In addition, a framework for a representation index and web representation index is presented. The introduced relative representation index was able to confirm taxonomic bias concerning Amphibia. Differences in worldwide public interest could also be evaluated within amphibians, indicating severe underrepresentation in public interest for caecilians.
期刊介绍:
Ecological Complexity is an international journal devoted to the publication of high quality, peer-reviewed articles on all aspects of biocomplexity in the environment, theoretical ecology, and special issues on topics of current interest. The scope of the journal is wide and interdisciplinary with an integrated and quantitative approach. The journal particularly encourages submission of papers that integrate natural and social processes at appropriately broad spatio-temporal scales.
Ecological Complexity will publish research into the following areas:
• All aspects of biocomplexity in the environment and theoretical ecology
• Ecosystems and biospheres as complex adaptive systems
• Self-organization of spatially extended ecosystems
• Emergent properties and structures of complex ecosystems
• Ecological pattern formation in space and time
• The role of biophysical constraints and evolutionary attractors on species assemblages
• Ecological scaling (scale invariance, scale covariance and across scale dynamics), allometry, and hierarchy theory
• Ecological topology and networks
• Studies towards an ecology of complex systems
• Complex systems approaches for the study of dynamic human-environment interactions
• Using knowledge of nonlinear phenomena to better guide policy development for adaptation strategies and mitigation to environmental change
• New tools and methods for studying ecological complexity