Numerous studies have demonstrated the significance of climatic and edaphic conditions in regulating the species composition and forest structure. However, there is still a lack of knowledge regarding the ecological processes that are brought about by phenological expression and regeneration. This study postulates that phenology, regeneration, and species dominance are a sequence of intermediary processes through which environmental conditions affect forest structure. In a dry deciduous forest of Similipal Biosphere Reserve (SBR), India, we analysed the relationships between various environmental characteristics, phenological parameters, seedling density, sapling density, and tree density using Structural Equation Modelling (SEM). The study revealed an immediate association between climate and leafing (Path Coefficient: -0.67; T: 9.374; p < 0.01), flowering (Path Coefficient: -0.61; T: 2.981; p < 0.01), and fruiting (Path Coefficient: -0.67; T: 3.51; p < 0.01). The sequential association between seedling and sapling density and forest structure was also significant (p < 0.5). However, these were found to have no direct link with phenology (T < 1; p > 0.05) which has been assumed to be the outcome of anthropogenic activities in the forest having an impact on the system. Comparatively, synchrony of fruit senescence and synchrony of flowering were the principal events that supported regeneration more than others, each accounting for 79 % and 74 % of their data, respectively. On the other hand, the monthly minimum temperature (contributing 97 % of data) was a key contribution to the principal component (PC1) and was primarily responsible for triggering the phenological cycle. Most of the important phenophases were seasonal (Rayleigh's Z varied from 10.93 to 50.01; p < 0.01) except the fruit initiation (Rayleigh's Z = 0.48; p = 0.2). Most of the species (72 % of all species) had regeneration densities that were corresponding to their competitive scores. Similarly, density of adult tree species proportionated with their density in regeneration stage (sapling and seedling), supporting the research hypothesis. However, several deviant species suggested that the system was affected by a wide range of other factors. This is the first study of its kind to evaluate the critical ecological processes together, and recommends further investigation across different woodland ecosystems to deepen understanding of forest functioning.
The analysis of keystone species based on network structure has increasingly emphasized the significance of quantitative food webs. In this study, Zhangze Lake was chosen as the research subject, and assigned a weighted index to each index by creatively combined isotope techniques with topological important and uniqueness theories, then united centrality theory. Next, various scales of indices were used to examine the importance of each nutrient in the food web, the correlation between the ordering and distribution across indices, and the difference in time. This study revealed that the centrality of phytoplankton was significantly higher in April compared to July. Both of the monthly unique species in this ecosystem were planktivorous feeders, while the keystone species serving as higher consumers were identified to be Exopalaemon modestus. The ranking results of the indices other than the weighted closeness centrality and weighted betweenness centrality showed consistency. Additionally, the distributions of the weighted indices differed significantly from their corresponding unweighted indices, with the weighted centrality indices being more similar to the out-degree ordering and more strongly correlated in April. When only strong interactions between species were considered, there was a negative correlation found between species centrality and uniqueness. Through the quantitative construction of a diet proportion food web model, combined with multiple indices, we have provided a practical solution for holistically and quantitatively identifying key species, thus aiding in the accurate and effective protection of biodiversity.