Vertical coupling to photonic crystal waveguide using chiral plasmonic lenses

IF 2.5 3区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Photonics and Nanostructures-Fundamentals and Applications Pub Date : 2024-04-09 DOI:10.1016/j.photonics.2024.101261
Kaizhu Liu , Yuxiang Yang , Xue Han , Changsen Sun , Chengchao He , Yanhong Li , Hsiang-Chen Chui
{"title":"Vertical coupling to photonic crystal waveguide using chiral plasmonic lenses","authors":"Kaizhu Liu ,&nbsp;Yuxiang Yang ,&nbsp;Xue Han ,&nbsp;Changsen Sun ,&nbsp;Chengchao He ,&nbsp;Yanhong Li ,&nbsp;Hsiang-Chen Chui","doi":"10.1016/j.photonics.2024.101261","DOIUrl":null,"url":null,"abstract":"<div><p>Manipulating surface plasmon polariton waves for the development of micro-nano devices has been widely studied in recent years. Two-dimensional artificial photonic crystals have bandstructure characteristics like semiconductors. However, the requirement for light to be incident along the structural periodic direction poses a challenge in coupling light into the photonic crystal, thereby impeding its integrations and applications. In this work, we proposed coupling vertically incident left-circularly polarized light into a photonic crystal waveguide using a chiral plasmonic lens. Linearly-polarized light can also generate surface plasmon polariton waves and couple them into photonic crystal waveguides, but the intensity is lower. In contrast, right-circularly polarized light propagates in the opposite direction and exhibits minimal propagation into the photonic crystal waveguide. The results indicate that the proposed structure can operate broadband within the wavelength range of 620–670 nm. This method provides a simple and easily integrated coupling method for photonic crystal devices.</p></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics and Nanostructures-Fundamentals and Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569441024000361","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Manipulating surface plasmon polariton waves for the development of micro-nano devices has been widely studied in recent years. Two-dimensional artificial photonic crystals have bandstructure characteristics like semiconductors. However, the requirement for light to be incident along the structural periodic direction poses a challenge in coupling light into the photonic crystal, thereby impeding its integrations and applications. In this work, we proposed coupling vertically incident left-circularly polarized light into a photonic crystal waveguide using a chiral plasmonic lens. Linearly-polarized light can also generate surface plasmon polariton waves and couple them into photonic crystal waveguides, but the intensity is lower. In contrast, right-circularly polarized light propagates in the opposite direction and exhibits minimal propagation into the photonic crystal waveguide. The results indicate that the proposed structure can operate broadband within the wavelength range of 620–670 nm. This method provides a simple and easily integrated coupling method for photonic crystal devices.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用手性等离子透镜实现与光子晶体波导的垂直耦合
近年来,利用表面等离子体极化子波开发微纳器件的研究十分广泛。二维人工光子晶体具有类似半导体的带状结构特征。然而,光必须沿结构周期方向入射,这给光子晶体的耦合带来了挑战,从而阻碍了光子晶体的集成和应用。在这项工作中,我们提出利用手性质子透镜将垂直入射的左圆极化光耦合到光子晶体波导中。线性偏振光也能产生表面等离子体极化子波,并将其耦合到光子晶体波导中,但强度较低。相比之下,右旋偏振光的传播方向相反,进入光子晶体波导的传播量很小。结果表明,所提出的结构可以在 620-670 纳米波长范围内宽带工作。这种方法为光子晶体器件提供了一种简单、易于集成的耦合方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.00
自引率
3.70%
发文量
77
审稿时长
62 days
期刊介绍: This journal establishes a dedicated channel for physicists, material scientists, chemists, engineers and computer scientists who are interested in photonics and nanostructures, and especially in research related to photonic crystals, photonic band gaps and metamaterials. The Journal sheds light on the latest developments in this growing field of science that will see the emergence of faster telecommunications and ultimately computers that use light instead of electrons to connect components.
期刊最新文献
Editorial Board Preface to the special issue in micro and nano structured mid-IR to terahertz materials and devices Corrigendum to “High sensitivity plasmonic refractive index sensor for early anaemia detection” [Photonics Nanostruct. - Fundam. Appl. 58(01) (2024) 101235] SPR humidity dynamic monitoring method via PVA sensing membrane thickness variation and image processing techniques Application of Cr2Si2Te6 saturable absorber in Er-doped fiber laser for generating dual-wavelength mode-locked pulse
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1