G-code evaluation in CNC milling to predict energy consumption through Machine Learning

IF 3.9 Q2 ENGINEERING, INDUSTRIAL Advances in Industrial and Manufacturing Engineering Pub Date : 2024-04-07 DOI:10.1016/j.aime.2024.100140
Anna-Maria Schmitt , Eddi Miller , Bastian Engelmann , Rafael Batres , Jan Schmitt
{"title":"G-code evaluation in CNC milling to predict energy consumption through Machine Learning","authors":"Anna-Maria Schmitt ,&nbsp;Eddi Miller ,&nbsp;Bastian Engelmann ,&nbsp;Rafael Batres ,&nbsp;Jan Schmitt","doi":"10.1016/j.aime.2024.100140","DOIUrl":null,"url":null,"abstract":"<div><p>Computerized Numeric Control (CNC) plays an essential role in highly autonomous manufacturing systems for interlinked process chains for machine tools. NC-programs are mostly written in standardized G-code. Evaluating CNC-controlled manufacturing processes before their real application is advantageous due to resource efficiency. One dimension is the estimation of the energy demand of a part manufactured by an NC-program, e.g. to discover optimization potentials. In this context, this paper presents a Machine Learning (ML) approach to assess G-code for CNC-milling processes from the perspective of the energy demand of basic G-commands. We propose Latin Hypercube Sampling as an efficient method of Design of Experiments to train the ML model with minimum experimental effort to avoid costly setup and implementation time of the model training and deployment.</p></div>","PeriodicalId":34573,"journal":{"name":"Advances in Industrial and Manufacturing Engineering","volume":"8 ","pages":"Article 100140"},"PeriodicalIF":3.9000,"publicationDate":"2024-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666912924000059/pdfft?md5=37d22a4223506262c227b264ea43e038&pid=1-s2.0-S2666912924000059-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Industrial and Manufacturing Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666912924000059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

Abstract

Computerized Numeric Control (CNC) plays an essential role in highly autonomous manufacturing systems for interlinked process chains for machine tools. NC-programs are mostly written in standardized G-code. Evaluating CNC-controlled manufacturing processes before their real application is advantageous due to resource efficiency. One dimension is the estimation of the energy demand of a part manufactured by an NC-program, e.g. to discover optimization potentials. In this context, this paper presents a Machine Learning (ML) approach to assess G-code for CNC-milling processes from the perspective of the energy demand of basic G-commands. We propose Latin Hypercube Sampling as an efficient method of Design of Experiments to train the ML model with minimum experimental effort to avoid costly setup and implementation time of the model training and deployment.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过机器学习评估数控铣削中的 G 代码以预测能耗
计算机数控(CNC)在高度自主的制造系统中发挥着至关重要的作用,可用于机床相互关联的工艺链。数控程序大多采用标准化的 G 代码编写。在实际应用之前对数控制造工艺进行评估,有利于提高资源利用效率。其中一个方面是估算由数控程序制造的零件的能源需求,例如发现优化潜力。在此背景下,本文提出了一种机器学习(ML)方法,从基本 G 命令的能源需求角度评估数控铣削过程的 G 代码。我们提出了拉丁超立方采样(Latin Hypercube Sampling)这一高效的实验设计方法,以最小的实验工作量训练 ML 模型,从而避免模型训练和部署过程中昂贵的设置和实施时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Industrial and Manufacturing Engineering
Advances in Industrial and Manufacturing Engineering Engineering-Engineering (miscellaneous)
CiteScore
6.60
自引率
0.00%
发文量
31
审稿时长
18 days
期刊最新文献
Experimental investigation on micro-EDM hybrid drilling process Impact of graphene nanoparticles on DLP-printed parts' mechanical behavior Erratum to “Influence of changing loading directions on damage in sheet metal forming” [Adv. Ind. Manuf. Eng. 8 (2024) 100139] Modeling of equivalent strain in 2D cross-sections of open die forged components using neural networks Influence on micro-geometry and surface characteristics of laser powder bed fusion built 17-4 PH miniature spur gears in laser shock peening
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1