Kendra G. Selby, Emily M. Hubecky, Valeria Zerda-Pinto, Claire E. Korte, Gabriel A. Bressendorff, Kevin R. Tucker
{"title":"Mass spectrometry imaging for environmental sciences: A review of current and future applications","authors":"Kendra G. Selby, Emily M. Hubecky, Valeria Zerda-Pinto, Claire E. Korte, Gabriel A. Bressendorff, Kevin R. Tucker","doi":"10.1016/j.teac.2024.e00232","DOIUrl":null,"url":null,"abstract":"<div><p>High resolution mass spectrometry has long been employed in environmental research to identify and quantify contaminants, biological metabolites, and abiotic sample constituents with high selectivity afforded by mass-based detection. Many mass spectrometry-based techniques require that the sample be homogenized prior to analysis, thereby eliminating the possibility of assessing the spatial distribution of analytes and preventing information regarding pollutant fate and uptake in various matrices. High-resolution mass-spectrometry imaging provides the unique opportunity to obtain two-dimensional information of unlabeled analytes of interest to identify their presence or absence, assess their fate and uptake within biotic and abiotic samples, and visualize the relative changes of endogenous compounds following pollutant exposure. Some researchers have begun demonstrating the power of HR-MSI for environmental applications, although the technique is still new and yet to be fully actualized. This review will highlight the current status of HR-MSI in environmental research through discussions of non-target analysis and suspect screening, assessment of wastewater treatment plant constituents, and PFAS toxicology, and an introduction to emerging applications.</p></div>","PeriodicalId":56032,"journal":{"name":"Trends in Environmental Analytical Chemistry","volume":"42 ","pages":"Article e00232"},"PeriodicalIF":11.1000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Environmental Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214158824000084","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
High resolution mass spectrometry has long been employed in environmental research to identify and quantify contaminants, biological metabolites, and abiotic sample constituents with high selectivity afforded by mass-based detection. Many mass spectrometry-based techniques require that the sample be homogenized prior to analysis, thereby eliminating the possibility of assessing the spatial distribution of analytes and preventing information regarding pollutant fate and uptake in various matrices. High-resolution mass-spectrometry imaging provides the unique opportunity to obtain two-dimensional information of unlabeled analytes of interest to identify their presence or absence, assess their fate and uptake within biotic and abiotic samples, and visualize the relative changes of endogenous compounds following pollutant exposure. Some researchers have begun demonstrating the power of HR-MSI for environmental applications, although the technique is still new and yet to be fully actualized. This review will highlight the current status of HR-MSI in environmental research through discussions of non-target analysis and suspect screening, assessment of wastewater treatment plant constituents, and PFAS toxicology, and an introduction to emerging applications.
期刊介绍:
Trends in Environmental Analytical Chemistry is an authoritative journal that focuses on the dynamic field of environmental analytical chemistry. It aims to deliver concise yet insightful overviews of the latest advancements in this field. By acquiring high-quality chemical data and effectively interpreting it, we can deepen our understanding of the environment. TrEAC is committed to keeping up with the fast-paced nature of environmental analytical chemistry by providing timely coverage of innovative analytical methods used in studying environmentally relevant substances and addressing related issues.