Kunal Shewani , Midhun K. Madhu , Rajesh K. Murarka
{"title":"Mechanistic insights into G-protein activation via phosphorylation mediated non-canonical pathway","authors":"Kunal Shewani , Midhun K. Madhu , Rajesh K. Murarka","doi":"10.1016/j.bpc.2024.107234","DOIUrl":null,"url":null,"abstract":"<div><p>Activation of heterotrimeric G-proteins (<span><math><mi>G</mi><mi>αβγ</mi></math></span>) downstream to receptor tyrosine kinases (RTKs) is a well-established crosstalk between the signaling pathways mediated by G-protein coupled receptors (GPCRs) and RTKs. While GPCR serves as a guanine exchange factor (GEF) in the canonical activation of <span><math><mi>G</mi><mi>α</mi></math></span> that facilitates the exchange of GDP for GTP, the mechanism through which RTK phosphorylations induce <span><math><mi>G</mi><mi>α</mi></math></span> activation remains unclear. Recent experimental studies revealed that the epidermal growth factor receptor (EGFR), a well-known RTK, phosphorylates the helical domain tyrosine residues Y154 and Y155 and accelerates the GDP release from the <span><math><mi>G</mi><mi>α</mi><mi>i</mi><mn>3</mn></math></span>, a subtype of <span><math><mi>G</mi><mi>α</mi></math></span>-protein. Using well-tempered metadynamics and extensive unbiased molecular dynamics simulations, we captured the GDP release event and identified the intermediates between bound and unbound states through Markov state models. In addition to weakened salt bridges at the domain interface, phosphorylations induced the unfolding of helix <span><math><mi>α</mi><mi>F</mi></math></span>, which contributed to increased flexibility near the hinge region, facilitating a greater distance between domains in the phosphorylated <span><math><mi>G</mi><mi>α</mi><mi>i</mi><mn>3</mn></math></span>. Although the larger domain separation in the phosphorylated system provided an unobstructed path for the nucleotide, the accelerated release of GDP was attributed to increased fluctuations in several conserved regions like P-loop, switch 1, and switch 2. Overall, this study provides atomistic insights into the activation of G-proteins induced by RTK phosphorylations and identifies the specific structural motifs involved in the process. The knowledge gained from the study could establish a foundation for targeting non-canonical signaling pathways and developing therapeutic strategies against the ailments associated with dysregulated G-protein signaling.</p></div>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":"309 ","pages":"Article 107234"},"PeriodicalIF":3.3000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301462224000632","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Activation of heterotrimeric G-proteins () downstream to receptor tyrosine kinases (RTKs) is a well-established crosstalk between the signaling pathways mediated by G-protein coupled receptors (GPCRs) and RTKs. While GPCR serves as a guanine exchange factor (GEF) in the canonical activation of that facilitates the exchange of GDP for GTP, the mechanism through which RTK phosphorylations induce activation remains unclear. Recent experimental studies revealed that the epidermal growth factor receptor (EGFR), a well-known RTK, phosphorylates the helical domain tyrosine residues Y154 and Y155 and accelerates the GDP release from the , a subtype of -protein. Using well-tempered metadynamics and extensive unbiased molecular dynamics simulations, we captured the GDP release event and identified the intermediates between bound and unbound states through Markov state models. In addition to weakened salt bridges at the domain interface, phosphorylations induced the unfolding of helix , which contributed to increased flexibility near the hinge region, facilitating a greater distance between domains in the phosphorylated . Although the larger domain separation in the phosphorylated system provided an unobstructed path for the nucleotide, the accelerated release of GDP was attributed to increased fluctuations in several conserved regions like P-loop, switch 1, and switch 2. Overall, this study provides atomistic insights into the activation of G-proteins induced by RTK phosphorylations and identifies the specific structural motifs involved in the process. The knowledge gained from the study could establish a foundation for targeting non-canonical signaling pathways and developing therapeutic strategies against the ailments associated with dysregulated G-protein signaling.
期刊介绍:
Biophysical Chemistry publishes original work and reviews in the areas of chemistry and physics directly impacting biological phenomena. Quantitative analysis of the properties of biological macromolecules, biologically active molecules, macromolecular assemblies and cell components in terms of kinetics, thermodynamics, spatio-temporal organization, NMR and X-ray structural biology, as well as single-molecule detection represent a major focus of the journal. Theoretical and computational treatments of biomacromolecular systems, macromolecular interactions, regulatory control and systems biology are also of interest to the journal.