Xiaoyong Huang , Huiting Yang , Xiaomin Ren , Qianqian Li , Jianzhong Wang , Jia Cheng , Zilong Sun
{"title":"Copper(II) enhances the antibacterial activity of nitroxoline against MRSA by promoting aerobic glycolysis","authors":"Xiaoyong Huang , Huiting Yang , Xiaomin Ren , Qianqian Li , Jianzhong Wang , Jia Cheng , Zilong Sun","doi":"10.1016/j.bpc.2025.107419","DOIUrl":null,"url":null,"abstract":"<div><div>Nitroxoline (NIT) is an FDA-approved antibiotic with numerous pharmacological properties. However, the intricate connections between its metal-chelating ability and antimicrobial efficacy remain incompletely understood. The specific interactions of NIT with different metal ions were measured via UV–vis absorption spectroscopy. Here, we found that NIT can bind to various metal ions, including Cu<sup>2+</sup>, Fe<sup>2+</sup>, Zn<sup>2+</sup> and Mn<sup>2+</sup>. However, the antimicrobial activity of NIT against methicillin-resistant <em>Staphylococcus aureus</em> (MRSA) was significantly enhanced by the inclusion of Cu<sup>2+</sup> as determined by a minimal inhibitory concentration (MIC) assay in Mueller-Hinton broth. The enhanced antibacterial effect was not influenced by the availability of oxygen. Mechanistically, Cu<sup>2+</sup> promoted bacterial proliferation, increased the bacterial transmembrane electrical potential, and increased intracellular acidification. In addition, Cu<sup>2+</sup> rewired bacterial metabolism, promoting the uptake of glucose with a lower level of ATP production. Pharmacological upregulation of glycolysis by VLX600 could potentiate the susceptibility of MRSA to NIT. Moreover, Cu<sup>2+</sup> also significantly increased the survival rate of acutely infected larvae. These collective results underscore that the enhanced antibacterial efficacy of NIT by Cu<sup>2+</sup> intricately involves aerobic glycolysis in MRSA.</div></div>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":"320 ","pages":"Article 107419"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301462225000316","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Nitroxoline (NIT) is an FDA-approved antibiotic with numerous pharmacological properties. However, the intricate connections between its metal-chelating ability and antimicrobial efficacy remain incompletely understood. The specific interactions of NIT with different metal ions were measured via UV–vis absorption spectroscopy. Here, we found that NIT can bind to various metal ions, including Cu2+, Fe2+, Zn2+ and Mn2+. However, the antimicrobial activity of NIT against methicillin-resistant Staphylococcus aureus (MRSA) was significantly enhanced by the inclusion of Cu2+ as determined by a minimal inhibitory concentration (MIC) assay in Mueller-Hinton broth. The enhanced antibacterial effect was not influenced by the availability of oxygen. Mechanistically, Cu2+ promoted bacterial proliferation, increased the bacterial transmembrane electrical potential, and increased intracellular acidification. In addition, Cu2+ rewired bacterial metabolism, promoting the uptake of glucose with a lower level of ATP production. Pharmacological upregulation of glycolysis by VLX600 could potentiate the susceptibility of MRSA to NIT. Moreover, Cu2+ also significantly increased the survival rate of acutely infected larvae. These collective results underscore that the enhanced antibacterial efficacy of NIT by Cu2+ intricately involves aerobic glycolysis in MRSA.
期刊介绍:
Biophysical Chemistry publishes original work and reviews in the areas of chemistry and physics directly impacting biological phenomena. Quantitative analysis of the properties of biological macromolecules, biologically active molecules, macromolecular assemblies and cell components in terms of kinetics, thermodynamics, spatio-temporal organization, NMR and X-ray structural biology, as well as single-molecule detection represent a major focus of the journal. Theoretical and computational treatments of biomacromolecular systems, macromolecular interactions, regulatory control and systems biology are also of interest to the journal.