Meng-Yuan Zhu , Zhen-Di Liu , Yan-Yu Song , Xian-Wei Wang , Jia-Bao Yuan , Meng-Ting Li , Yan-Jing Lou , Zhen-Ling Gao , Chang-Chun Song
{"title":"Soil microbial functional diversity is primarily affected by soil nitrogen, salinity and alkalinity in wetland ecosystem","authors":"Meng-Yuan Zhu , Zhen-Di Liu , Yan-Yu Song , Xian-Wei Wang , Jia-Bao Yuan , Meng-Ting Li , Yan-Jing Lou , Zhen-Ling Gao , Chang-Chun Song","doi":"10.1016/j.apsoil.2024.105407","DOIUrl":null,"url":null,"abstract":"<div><p>Wetland ecosystems, recognized as important carbon sinks, face challenges due to climate change. Although wetland soil microorganisms play a major role in the wetland carbon cycle, the mechanisms influencing their spatial distribution remain elusive. Here, we investigate the impact of soil properties on the spatial distribution of soil microorganisms across five saline-alkali wetlands (Xianghai [XH], Niuxintaobao [NX], Momoge [MMG], Zhalong [ZL], and Halahai [HLH]) within the Songnen Plain, China. We utilized the Biolog-ECO method to assess the carbon metabolic activity, microbial diversity, and carbon source utilization preference of soil microorganisms. Using the structural equation model, we analyzed factors influencing microbial carbon metabolic activity and microbial diversity. Results indicate that southern wetlands harbor soil microbial communities exhibiting higher carbon metabolic activity, Shannon index, and substrate richness, compared to their northern counterparts. Specifically, soil microorganisms in NX and XH wetlands demonstrate a preference for labile organic carbon, whereas those in HLH and ZL wetlands preferred to use recalcitrant carbon. Furthermore, soil microbial carbon metabolic activity is primarily regulated by soil total nitrogen content, whereas soil microbial diversity is primarily regulated by soil salinity and alkalinity. Our findings revealed the distribution characteristics and influencing factors of soil microorganisms in the Songnen Plain wetland, contributing to understanding the maintenance mechanism of wetland carbon sink function.</p></div>","PeriodicalId":8099,"journal":{"name":"Applied Soil Ecology","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soil Ecology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0929139324001380","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Wetland ecosystems, recognized as important carbon sinks, face challenges due to climate change. Although wetland soil microorganisms play a major role in the wetland carbon cycle, the mechanisms influencing their spatial distribution remain elusive. Here, we investigate the impact of soil properties on the spatial distribution of soil microorganisms across five saline-alkali wetlands (Xianghai [XH], Niuxintaobao [NX], Momoge [MMG], Zhalong [ZL], and Halahai [HLH]) within the Songnen Plain, China. We utilized the Biolog-ECO method to assess the carbon metabolic activity, microbial diversity, and carbon source utilization preference of soil microorganisms. Using the structural equation model, we analyzed factors influencing microbial carbon metabolic activity and microbial diversity. Results indicate that southern wetlands harbor soil microbial communities exhibiting higher carbon metabolic activity, Shannon index, and substrate richness, compared to their northern counterparts. Specifically, soil microorganisms in NX and XH wetlands demonstrate a preference for labile organic carbon, whereas those in HLH and ZL wetlands preferred to use recalcitrant carbon. Furthermore, soil microbial carbon metabolic activity is primarily regulated by soil total nitrogen content, whereas soil microbial diversity is primarily regulated by soil salinity and alkalinity. Our findings revealed the distribution characteristics and influencing factors of soil microorganisms in the Songnen Plain wetland, contributing to understanding the maintenance mechanism of wetland carbon sink function.
期刊介绍:
Applied Soil Ecology addresses the role of soil organisms and their interactions in relation to: sustainability and productivity, nutrient cycling and other soil processes, the maintenance of soil functions, the impact of human activities on soil ecosystems and bio(techno)logical control of soil-inhabiting pests, diseases and weeds.