{"title":"Synthesis and transformation of graphene-like structures from bamboo waste for photoelectrochemical devices","authors":"Febi Indah Fajarwati , Rahmat Hidayat , Ganjar Fadillah","doi":"10.1016/j.cartre.2024.100351","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents a sustainable and versatile approach to synthesize graphene-like structures from bamboo waste for application in photoelectrochemical (PEC) devices. Due to its high cellulose content, bamboo, a locally available and renewable resource, is a perfect precursor for producing graphene-like materials. The synthesis process involves bamboo waste pyrolysis, followed by treatments with different solvents: ultrapure water (UPW), NaOH, and green tea extract. Characterization techniques confirmed the successful transformation of bamboo waste into carbon-rich, graphene-like materials with varying surface properties. The electrochemical characterization showed that the graphene-like materials could transfer electrons very well with a high current response compared to charcoal as a precursor. PEC evaluations revealed their potential as photoanodes, exhibiting efficient light absorption and charge carrier separation. This research emphasizes the significance of bamboo waste as a valuable precursor for eco-friendly graphene-like materials, offering a sustainable pathway for developing efficient PEC devices and green energy technologies.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"15 ","pages":"Article 100351"},"PeriodicalIF":3.1000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667056924000324/pdfft?md5=becce2b3559b50cc2584ec1ebcabb1e7&pid=1-s2.0-S2667056924000324-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667056924000324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents a sustainable and versatile approach to synthesize graphene-like structures from bamboo waste for application in photoelectrochemical (PEC) devices. Due to its high cellulose content, bamboo, a locally available and renewable resource, is a perfect precursor for producing graphene-like materials. The synthesis process involves bamboo waste pyrolysis, followed by treatments with different solvents: ultrapure water (UPW), NaOH, and green tea extract. Characterization techniques confirmed the successful transformation of bamboo waste into carbon-rich, graphene-like materials with varying surface properties. The electrochemical characterization showed that the graphene-like materials could transfer electrons very well with a high current response compared to charcoal as a precursor. PEC evaluations revealed their potential as photoanodes, exhibiting efficient light absorption and charge carrier separation. This research emphasizes the significance of bamboo waste as a valuable precursor for eco-friendly graphene-like materials, offering a sustainable pathway for developing efficient PEC devices and green energy technologies.